【題目】如圖,一架云梯長(zhǎng)25米,斜靠在一面墻上,梯子靠墻的一端距地面24米。(1)這個(gè)梯子底端離墻多少米?(2)如果梯子的頂端下滑了4米,那么梯子的底部在水平方向也滑動(dòng)了4米嗎?如果不是,那滑動(dòng)了幾米?

【答案】(1)7米;(2)梯子向后滑動(dòng)了8.

【解析】試題分析:(1)由題意得a=24,c=25,根據(jù)可求出梯子底端離墻有多遠(yuǎn).
(2)設(shè)滑動(dòng)后梯子的底端到墻的距離為x米,由勾股定理可得出此時(shí)的,繼而能和(1)的進(jìn)行比較.

試題解析:(1)由題意得此時(shí)a=24,c=25,根據(jù)

可得:b=7米,

答:這個(gè)梯子底端離墻有7米;

(2)不是.

理由:設(shè)滑動(dòng)后梯子的底端到墻的距離為x米,

得方程

解得:x=15,

所以梯子向后滑動(dòng)了8.

綜合得:如果梯子的頂端下滑了4米,那么梯子的底部在水平方向不是滑4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠A,∠B,∠C的對(duì)應(yīng)邊分別是a,b,c,則滿足下列條件但不是直角三角形的是( )

A. ∠A=∠B-∠C B. ∠A:∠B:∠C=1:3:4 C. a:b:c=1::3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在有些情況下,不需要計(jì)算出結(jié)果也能把絕對(duì)值符號(hào)去掉.例如:

|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7;

根據(jù)上面的規(guī)律,把下列各式寫(xiě)成去掉絕對(duì)值符號(hào)的形式:

(1)|7-21|=_________

(2)||=____________;

(3)||=__________;

(4)用合理的方法計(jì)算:||+||-×|-|+.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知正方形ABCD的對(duì)角線ACBD相交于點(diǎn)O,EAC上一點(diǎn),連接EB,過(guò)點(diǎn)AAM⊥BE,垂足為MAMBD于點(diǎn)F

(1)求證:OEOF;

(2)如圖(2),若點(diǎn)EAC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其他條件不變,則結(jié)論“OEOF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家趙爽的勾股方圓圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a和b,那么(a+b)2的值為(

A.49 B.25 C.13 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+8x軸、y軸分別交于A.B兩點(diǎn),點(diǎn)MOB上一點(diǎn),若直線AB沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)C處,則點(diǎn)M的坐標(biāo)是(

A. (0,4) B. (0,3) C. (﹣4,0) D. (0,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C,D是線段AB上的兩點(diǎn),已知AC:CD:DB=1:2:3,MN分別是AC,BD的中點(diǎn),且AB=36cm,求線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,CD的右側(cè),BE平分ABC,DE平分ADC,BE、DE所在直線交于點(diǎn)E,ADC=70°.

(1)EDC的度數(shù);

(2)ABC=n°,BED的度數(shù)(用含n的代數(shù)式表示);

(3)將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫(huà)出圖形并判斷BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的文字,解答問(wèn)題.

大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分-1,根據(jù)以上的內(nèi)容,解答下面的問(wèn)題:

1的整數(shù)部分是 ,小數(shù)部分是

21+的整數(shù)部分是 ,小數(shù)部分是

3若設(shè)2+整數(shù)部分是x,小數(shù)部分是y,求x-y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案