【題目】如圖,已知RtABC中,∠C=90°,∠BAC=30°,點(diǎn)D為邊BC上的點(diǎn),連接AD,∠BAD=α,點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn)為E,點(diǎn)E關(guān)于AC的對(duì)稱點(diǎn)為G,線段EGAB于點(diǎn)F,連接AE,DEDG,AG

1)依題意補(bǔ)全圖形;

2)求∠AGE的度數(shù)(用含α的式子表示);

3)猜想:線段EGEFAF之間是否存在一個(gè)數(shù)量關(guān)系?若存在,請(qǐng)寫(xiě)出這個(gè)數(shù)量關(guān)系并證明;若不存在,請(qǐng)說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)∠AGE=60°-α;(3EG=2EF+AF,見(jiàn)解析

【解析】

1)根據(jù)題意和軸對(duì)稱的性質(zhì),補(bǔ)全圖形即可;

2)連接AE,根據(jù)對(duì)稱的性質(zhì)可得ABED的垂直平分線,ACEG的垂直平分線,然后根據(jù)垂直平分線的性質(zhì)可得AE=AG=AD,即可求出∠EAC和∠EAG,然后根據(jù)等邊對(duì)等角和三角形的內(nèi)角和定理即可求出結(jié)論;

3)在FG上截取NG=EF,連接AN,利用SAS即可證出△AEF≌△AGN,從而得出AF=FN,即可得出結(jié)論.

解:(1)補(bǔ)全圖形:如圖所示.

2)連接AE

由對(duì)稱性可知,ABED的垂直平分線,ACEG的垂直平分線.

AE=AG=AD

∴∠AEG=∠AGE,∠BAE=∠BAD=α

∴∠EAC=∠BAC+∠BAE=30°+α

∴∠EAG=2EAC=60°+

∴∠AGE==60°-α

3)存在,即:EG=2EF+AF

證明:在FG上截取NG=EF,連接AN

AE=AG,

∠AEG=∠AGE.

EF=GN

∴△AEF≌△AGN.

AF=AN.

∠EAF=α,∠AEG=60°-α.

∠AFN=∠EAF +∠AEG=60°

∴△AFN為等邊三角形.

AF=FN.

EG=EF+FN+NG=2EF+AF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位舉行“健康人生”徒步走活動(dòng),某人從起點(diǎn)體育村沿建設(shè)路到市生態(tài)園,再沿原路返回,設(shè)此人離開(kāi)起點(diǎn)的路程s(千米)與徒步時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示,其中從起點(diǎn)到市生態(tài)園的平均速度是4千米/小時(shí),用2小時(shí),根據(jù)圖象提供信息,解答下列問(wèn)題.

1)求圖中的a值.

2)若在距離起點(diǎn)5千米處有一個(gè)地點(diǎn)C,此人從第一次經(jīng)過(guò)點(diǎn)C到第二次經(jīng)過(guò)點(diǎn)C,所用時(shí)間為1.75小時(shí).

①求AB所在直線的函數(shù)解析式;

②請(qǐng)你直接回答,此人走完全程所用的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶假期期間,某單位8名領(lǐng)導(dǎo)和320名員工集體外出進(jìn)行素質(zhì)拓展活動(dòng),準(zhǔn)備租用45座大車或30座小車.若租用2輛大車3輛小車共需租車費(fèi)1700元;若租用3輛大車2輛小車共需租車費(fèi)1800

1)求大、小車每輛的租車費(fèi)各是多少元?

2)若每輛車上至少要有一名領(lǐng)導(dǎo),每個(gè)人均有座位,且總租車費(fèi)用不超過(guò)3100元,求最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,點(diǎn)PCD的中點(diǎn),∠BCD=60°,射線APBC的延長(zhǎng)線于點(diǎn)E,射線BPDE于點(diǎn)K,點(diǎn)O是線段BK的中點(diǎn).

1)求證:△ADP≌△ECP;

2)若BP=nPK,試求出n的值;

3)作BMAE于點(diǎn)M,作KNAE于點(diǎn)N,連結(jié)MO、NO,如圖2所示,請(qǐng)證明△MON是等腰三角形,并直接寫(xiě)出∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC30°,點(diǎn) D 為∠BAC內(nèi)一點(diǎn),點(diǎn) E,F 分別是AB,AC上的動(dòng)點(diǎn).若AD9,則△DEF周長(zhǎng)的最小值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xoy中,點(diǎn)Mx軸的正半軸上,Mx軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),且C為AE的中點(diǎn),AEy軸于G點(diǎn),若點(diǎn)A的坐標(biāo)為(-1,0),AE=4

(1)求點(diǎn)C的坐標(biāo);

(2)連接MG、BC,求證:MGBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)圖1是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線剪開(kāi)分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.

圖2的陰影部分的正方形的邊長(zhǎng)是______.

用兩種不同的方法求圖中陰影部分的面積.

(方法1)= ____________;

(方法2)= ____________;

(3) 觀察圖2,寫(xiě)出(a+b)2,(a-b)2,ab這三個(gè)代數(shù)式之間的等量關(guān)系;

根據(jù)題中的等量關(guān)系,解決問(wèn)題:若m+n=10,m-n=6,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AB=AD=8,A=60°,D=150°,四邊形的周長(zhǎng)為32,求BC和DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABCAB6,AC8DBC邊上一動(dòng)點(diǎn),DEACABE,DFABACF

1)若BC10,判斷四邊形AEDF的形狀并證明;

2)在(1)的條件下,若四邊形AEDF是正方形,求BD的長(zhǎng);

3)若∠BAC60°,四邊形AEDF是菱形,則BD  

查看答案和解析>>

同步練習(xí)冊(cè)答案