為響應國家節(jié)能減排的號召,鼓勵居民節(jié)約用電,各省先后出臺了居民用電“階梯價格”制度,如表中是某省的電價標準(每月).例如:方女士家5月份用電500度,電費=180×0.6+220×二檔電價+100×三檔電價=352元;李先生家5月份用電460度,交費316元,請問表中二檔電價、三檔電價各是多少?
階梯 | 電量 | 電價 |
一檔 | 0﹣180度 | 0.6元/度 |
二檔 | 181﹣400度 | 二檔電價 |
三檔 | 401度及以上 | 三檔電價 |
科目:初中數(shù)學 來源: 題型:
如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過點(0,3),且當x=1時,y有最小值2.
(1)求a,b,c的值;
(2)設二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)(k為實數(shù)),它的圖象的頂點為D.
①當k=1時,求二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的交點坐標;
②請在二次函數(shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找出一個點M,N,不論k取何值,這兩個點始終關于x軸對稱,直接寫出點M,N的坐標(點M在點N的上方);
③過點M的一次函數(shù)y=﹣x+t的圖象與二次函數(shù)y=ax2+bx+c的圖象交于另一點P,當k為何值時,點D在∠NMP的平分線上?
④當k取﹣2,﹣1,0,1,2時,通過計算,得到對應的拋物線y=k(2x+2)﹣(ax2+bx+c)的頂點分別為(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),請問:頂點的橫、縱坐標是變量嗎?縱坐標是如何隨橫坐標的變化而變化的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某校數(shù)學興趣小組要測量西山植物園蒲寧之珠的高度.如圖,他們在點A處測得蒲寧之珠最高點C的仰角為45°,再往蒲寧之珠方向前進至點B處測得最高點C的仰角為56°,AB=62m,根據(jù)這個興趣小組測得的數(shù)據(jù),則蒲寧之珠的高度CD約為 m.(sin56°≈0.83,tan56°≈1.49,結果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
下列一元二次方程中,有兩個相等實數(shù)根的是( 。
A. x2﹣8=0 B. 2x2﹣4x+3=0 C. 9x2+6x+1=0 D. 5x+2=3x2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,是矗立在高速公路水平地面上的交通警示牌,經測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為 米(結果精確到0.1米,參考數(shù)據(jù):=1.41,=1.73).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關系.
[探究發(fā)現(xiàn)]
小聰同學利用圖形變換,將△CAD繞點C逆時針旋轉90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 勾股 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關系是 .
[實踐運用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學探究的結論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
一個批發(fā)商銷售成本為20元/千克的某產品,根據(jù)物價部門規(guī)定:該產品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關系式;
(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com