【題目】某校實(shí)驗(yàn)課程改革,初三年級設(shè)罝了A,B,C,D四門不同的拓展性課程(每位學(xué)生只選修其中一門,所有學(xué)生都有一門選修課程),學(xué)校摸底調(diào)査了初三學(xué)生的選課意向,并將調(diào)查結(jié)果繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,問該校初三年級共有多少學(xué)生?其中要選修B、C課程的各有多少學(xué)生?

【答案】400,100.

【解析】分析:利用條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖得到選修A的學(xué)生數(shù)和它所占的百分比,則利用它們可計(jì)算出該校初三年級共有的學(xué)生人數(shù),然后用總?cè)藬?shù)分別減去選修A、C、D的人數(shù)即可得到選修B的人數(shù).

詳解:180÷45%=400(人),

所以該校初三年級共有400名學(xué)生,

要選修C的學(xué)生數(shù)為400×12%=48人;要選修B的學(xué)生數(shù)為400-180-48-72=100(人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校一社團(tuán)為了了解市區(qū)初中學(xué)生視力變化情況,從市區(qū)年入校的學(xué)生中隨機(jī)抽取了部分學(xué)生連續(xù)三年的視力跟蹤調(diào)查,并將收集到的數(shù)據(jù)進(jìn)行整理,制成了折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)這次接受調(diào)查的學(xué)生有_____________人;

2)扇形統(tǒng)計(jì)圖中“”所對應(yīng)的圓心角有多少度?

3)現(xiàn)規(guī)定視力達(dá)到及以上為合格,若市區(qū)年入校的學(xué)生共計(jì)人,請你估計(jì)該屆名學(xué)生的視力在年有多少名學(xué)生合格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解今年初三學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,某校對上學(xué)期的數(shù)學(xué)成績作了統(tǒng)計(jì)分析,繪制得到如下圖表.請結(jié)合圖表所給出的信息解答下列問題:

成績

頻數(shù)

頻率

優(yōu)秀

45

b

良好

a

0.3

合格

105

0.35

不合格

60

c

(1)該校初三學(xué)生共有多少人?

(2)求表中a,b,c的值,并補(bǔ)全條形統(tǒng)計(jì)圖.

(3)初三(一)班數(shù)學(xué)老師準(zhǔn)備從成績優(yōu)秀的甲、乙、丙、丁四名同學(xué)中任意抽取兩名同學(xué)做學(xué)習(xí)經(jīng)驗(yàn)介紹,求恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,OACABD的面積之和為,則k的值為(

A. 4 B. 3 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,弦BC=2,點(diǎn)A是優(yōu)弧BC上一動(dòng)點(diǎn)(不包括端點(diǎn)),ABC的高BD、CE相交于點(diǎn)F,連結(jié)ED.下列四個(gè)結(jié)論:

①∠A始終為60°;

②當(dāng)∠ABC=45°時(shí),AE=EF;

③當(dāng)ABC為銳角三角形時(shí),ED=

④線段ED的垂直平分線必平分弦BC.

其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON∠AOC的平分線,OM∠BOC的平分線.

1)求∠MON的大小.

2)當(dāng)銳角∠AOC的大小發(fā)生改變時(shí),∠MON的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD、CE是△ABC的高,AFBC,BE=3AE5

(1)圖中有全等的三角形嗎?請找出來并加以證明;

(2)求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于點(diǎn)O.

(1)AB的長為   ;

(2)如圖2,將一個(gè)足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F(xiàn),連接EFAC相交于點(diǎn)G.

①求證:ABE≌△ACF;

②判斷AEF是哪一種特殊三角形,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案