【題目】小明從家出發(fā)沿濱江路到外灘公園徒步鍛煉,到外灘公園后立即沿原路返回,小明離開(kāi)家的路程s(單位:千米)與走步時(shí)間t(單位:小時(shí))之間的函數(shù)關(guān)系如圖所示,其中從家到外灘公園的平均速度是4千米/時(shí),根據(jù)圖形提供的信息,解答下列問(wèn)題:
(1)求圖中的a值;
(2)若在距離小明家5千米處有一個(gè)地點(diǎn)C,小明從第一層經(jīng)過(guò)點(diǎn)C到第二層經(jīng)過(guò)點(diǎn)C,所用時(shí)間為1.75小時(shí),求小明返回過(guò)程中,s與t的函數(shù)解析式,不必寫(xiě)出自變量的取值范圍;
(3)在(2)的條件下,求小明從出發(fā)到回到家所用的時(shí)間.
【答案】(1)8;(2)s=﹣3t+14;(3)小明從出發(fā)到回到家所用的時(shí)間是小時(shí).
【解析】分析: (1)根據(jù)路程=速度×時(shí)間即可求出a值;
(2)根據(jù)速度=路程÷時(shí)間求出此人返回時(shí)的速度,再根據(jù)路程=8-返回時(shí)的速度×時(shí)間即可得出AB所在直線的函數(shù)解析式;
(3)令(2)中的函數(shù)關(guān)系式中s=0,求出t值即可.
詳解:
(1)由題意可得,
a=2×4=8,
即a的值是8;
(2)由題意可得,
小明從家到公園的過(guò)程中,C點(diǎn)到A點(diǎn)用的時(shí)間為:(8﹣5)÷4=0.75小時(shí),
小明從公園到家的過(guò)程中,A點(diǎn)到C點(diǎn)用的時(shí)間為1.75﹣0.75=1小時(shí),速度為:(8﹣5)÷1=3千米/時(shí),
故小明從公園到家用的時(shí)間為:8÷3=小時(shí),
∴點(diǎn)A(2,8),點(diǎn)B(,0)
設(shè)小明返回過(guò)程中,s與t的函數(shù)解析式是s=kt+b,
,得
即小明返回過(guò)程中,s與t的函數(shù)解析式是s=﹣3t+14;
(3)當(dāng)s=0時(shí),﹣3t+14=0,得t=,
答:小明從出發(fā)到回到家所用的時(shí)間是小時(shí).
點(diǎn)睛: 本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的函數(shù)解析式,利用函數(shù)的思想和數(shù)形結(jié)合的思想解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結(jié)DC.
(1)圖2中的全等三角形是_______________,并給予證明(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母);
(2)指出線段DC和線段BE的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】墻上釘著用一根彩繩圍成的梯形形狀的飾物,如圖實(shí)線所示(單位:cm).小穎將梯形下底的釘子去掉,并將這條彩繩釘成一個(gè)長(zhǎng)方形,如圖虛線所示.小穎所釘長(zhǎng)方形的長(zhǎng)、寬各為多少厘米?如果設(shè)長(zhǎng)方形的長(zhǎng)為xcm,根據(jù)題意,可得方程為( 。
A.2(x+10)=10×4+6×2B.2(x+10)=10×3+6×2
C.2x+10=10×4+6×2D.2(x+10)=10×2+6×2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A=60°,BD,CE是△ABC的兩條角平分線,且BD,CE交于點(diǎn)F,如圖所示,用等式表示BE,BC,CD這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;
曉東通過(guò)觀察,實(shí)驗(yàn),提出猜想:BE+CD=BC,他發(fā)現(xiàn)先在BC上截取BM,使BM=BE,連接FM,再利用三角形全等的判定和性質(zhì)證明CM=CD即可.
(1)下面是小東證明該猜想的部分思路,請(qǐng)補(bǔ)充完整;
①在BC上截取BM,使BM=BE,連接FM,則可以證明△BEF與______全等,判定它們?nèi)鹊囊罁?jù)是______;
②由∠A=60°,BD,CE是△ABC的兩條角平分線,可以得出∠EFB=______°;
(2)請(qǐng)直接利用①,②已得到的結(jié)論,完成證明猜想BE+CD=BC的過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一圓形零件的標(biāo)準(zhǔn)直徑是,超過(guò)規(guī)定直徑長(zhǎng)度的數(shù)量(毫米)記作正數(shù),不足規(guī)定直徑長(zhǎng)度的數(shù)量(毫米)記作負(fù)數(shù),檢驗(yàn)員某次抽查了零件樣品,檢查的結(jié)果如下:
序號(hào) | |||||
直徑長(zhǎng)度/ |
(1)試指出哪件樣品的大小最符合要求?
(2)如果規(guī)定誤差的絕對(duì)值在之內(nèi)是正品.誤差的絕對(duì)值在之間是次品,誤差的絕對(duì)值超過(guò)的是廢品,那么上述五件樣品中,哪些是正品,哪些是次品,哪些是廢品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書(shū)九章》里記載有這樣一道題:“問(wèn)有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長(zhǎng)分別為5里,12里,13里,問(wèn)這塊沙田面積有多大?題中“里”是我國(guó)市制長(zhǎng)度單位,1里=500米,則該沙田的面積為( )
A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB=AC,AE=AF,連結(jié)BF,CE,交于O,連結(jié)AO.求證:
(1)∠B=∠C
(2)AO平分∠BAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知用2輛A型車(chē)和1輛B型車(chē)載滿(mǎn)貨物一次可運(yùn)貨物10噸;用1輛A型車(chē)和2輛B型車(chē)載滿(mǎn)貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車(chē)a輛,B型車(chē)b輛,一次運(yùn)完,且恰好每輛車(chē)都載滿(mǎn)貨物.根據(jù)以上信息,解答下列問(wèn)題:
(1)用1輛A型車(chē)和1輛B型車(chē)都載滿(mǎn)貨物一次可分別運(yùn)貨多少?lài)崳?/span>
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車(chē)方案.若A型車(chē)每輛需租金100元/次,B型車(chē)每輛需租金120元/次.請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少租車(chē)費(fèi).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com