【題目】如圖,四邊形ABCD內接于⊙O,∠BAD90°,AD、BC的延長線交于點F,點ECF上,且∠DEC=∠BAC

1)求證:DE⊙O的切線;

2)當ABAC時,若CE4,EF6,求⊙O的半徑.

【答案】(1)DE是⊙O的切線(2

【解析】

1)先判斷出BD是圓O的直徑,再判斷出BDDE,即可得出結論;(2)根據(jù)余角的性質和等腰三角形的性質得到∠F=∠EDF,根據(jù)等腰三角形的性質得到DEEF3,根據(jù)勾股定理得到CD的長,再由相似三角形的性質即可得到結論.

1)如圖,連接BD

∵∠BAD90°,

∴點O必在BD上,即:BD是直徑,

∴∠BCD90°,

∴∠DEC+CDE90°,

∵∠DEC=∠BAC,

∴∠BAC+CDE90°,

∵∠BAC=∠BDC,

∴∠BDC+CDE90°,

∴∠BDE90°,即:BDDE,

∵點D在⊙O上,

DE是⊙O的切線;

2)∵∠BAF=∠BDE90°,

∴∠F+ABC=∠FDE+ADB90°,

ABAC,

∴∠ABC=∠ACB

∵∠ADB=∠ACB,

∴∠F=∠EDF,

DEEF6,

CE4,∠BCD90°,

∴∠DCE90°,

CD ,

∵∠BDE90°,CDBE,

∴△CDE∽△CBD,

,

BD,

∴⊙O的半徑=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)

(1)判斷點M是否在直線y=﹣x+4上,并說明理由;

(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;

(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+bx的增大而增大時,則n取值范圍是  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線為拋物線b、c為常數(shù),夢想直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其夢想三角形”.

已知拋物線與其夢想直線交于A、B兩點A在點B的左側,與x軸負半軸交于點C

填空:該拋物線的夢想直線的解析式為______,點A的坐標為______,點B的坐標為______;

如圖,點M為線段CB上一動點,將AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的夢想三角形,求點N的坐標;

當點E在拋物線的對稱軸上運動時,在該拋物線的夢想直線上,是否存在點F,使得以點AC、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,E,F分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BMEF交于點P,再展開.則下列結論中:①CMDM②∠ABN30°;③AB23CM2④△PMN是等邊三角形.

正確的有( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請認真閱讀下面的數(shù)學小探究系列,完成所提出的問題:

探究1:如圖1,在等腰直角三角形ABC中,,將邊AB繞點B順時針旋轉得到線段BD,連接求證:的面積為提示:過點DBC邊上的高DE,可證

探究2:如圖2,在一般的中,,,將邊AB繞點B順時針旋轉得到線段BD,連接請用含a的式子表示的面積,并說明理由.

探究3:如圖3,在等腰三角形ABC中,,,將邊AB繞點B順時針旋轉得到線段BD,連接試探究用含a的式子表示的面積,要有探究過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組同學進行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度(或坡比i=12.4,求大樹CD的高度?(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81tan36°≈0.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,ABBC,點D是線段AB上的一點,連接CD,過點BBGCD,分別交CD,CA于點EF,與過點A且垂直于AB的直線相交于點G,連接DF.給出以下四個結論:①②若點DAB的中點,則AF=AB;③當BC,F,D四點在同一個圓上時,DFDB;④若,,其中正確的結論序號是( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為   度.

(3)若該超市這一周內有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左、右兩數(shù)之和,它給出了(a+bnn為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,21,恰好對應(a+b2a2+2ab+b2展開式中的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應著(a+b3a3+3a2b+3ab2+b2展開式中的系數(shù)等.

1)(a+bn展開式中項數(shù)共有   項.

2)寫出(a+b5的展開式:(a+b5   

3)利用上面的規(guī)律計算:255×24+10×2310×22+5×21

查看答案和解析>>

同步練習冊答案