【題目】如圖,已知AB為⊙O的直徑,CD是弦,ABCDE,OFACF,BE=OF.

(1)求證:OFBC;

(2)求證AFO≌△CEB;

(3)若EB=5cm,CD=cm,設(shè)OE=x,求x值及陰影部分的面積

【答案】(1)見解析;(2)見解析;(3)x=5;

【解析】

(1)已知AB⊙O的直徑,根據(jù)直徑所對的圓周角為直角可得 ∠ACB=90°,再由OF⊥AC,即可證得OF∥BC;(2)由兩直線平行,同位角相等可得∠AOF=∠B,再由∠AFO=∠CEB=90°,OF=BE,利用ASA即可證明△AFO≌△CEB;(3)連接OD,利用陰影部分面積=扇形COD的面積-COD的面積即可求解.

1)證明:∵AB是⊙O的直徑,

∴∠ACB=90°,

OFAC,

OFBC;

(2)∵OFBC

∴∠AOF=B,

AB是⊙O的直徑,ABCD

∴∠BEC=90°,

OFAC,

∴∠AFO=BEC=90°,

∵在AFOCEB

AFO=CEB,OF=BE,∠AOF=B,

∴△AFO≌△CEBASA);

3)連接OD,

由垂徑定理得:CE=DE=5cm,

EB=5cm,

∴∠ABC=60°,因為OB=OC

OBC是等邊三角形,

∴∠BOC=60°

則弧CD所對的圓心角是120°,

RtOCE中,由勾股定理得: ,x=5cm),

則扇形COD的面積為 .

OE=5cm,∴COD的面積為 ;

∴陰影部分面積為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖長方形ABCD中,AB=3cm,AD=9cm,將此長方形折疊,使點B與點D重合,折痕為EF,則下列結(jié)論:①△ABE的面積為6cm2,②BF的長為5cm,③EF的長為cm,④四邊形CDEF的面積是13.5cm2.其中正確的個數(shù)有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=x2(m﹣1)x﹣m(m>0)與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=3OA.

(1)求該拋物線的函數(shù)表達(dá)式;

(2)動點D在線段BC下方的拋物線上.

①連接AC、BC,過點Dx軸的垂線,垂足為E,交BC于點F.過點FFGAC,垂足為G.設(shè)點D的橫坐標(biāo)為t,線段FG的長為d,用含t的代數(shù)式表示d;

②過點DDHBC,垂足為H,連接CD.是否存在點D,使得△CDH中的一個角恰好等于∠ABC2倍?如果存在,求出點D的橫坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx22x3

(1)求圖象的開口方向、對稱軸、頂點坐標(biāo);

(2)求圖象與x軸的交點坐標(biāo),與y軸的交點坐標(biāo);

(3)當(dāng)x為何值時,yx的增大而增大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對角線AC將正方形ABCD分成兩個等腰三角形,點E,F將對角線AC三等分,且AC15,點P在正方形的邊上,則滿足PE+PF5的點P的個數(shù)是(  )

A.0B.4C.8D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A90°,ABAC,點DBC的中點.

1)如圖①,若點EF分別為AB、AC上的點,且DEDF

①求證:BEAF;

②若SBDESABC2,求SCDF;

2)若點E、F分別為AB、CA延長線上的點,且DEDF

BEAF還成立嗎?請利用圖②說明理由;

②若SBDESABC8,直接寫出DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為測量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角∠HDE45°,此時教學(xué)樓頂端G恰好在視線DH上,再向前走7米到達(dá)B處,又測得教學(xué)樓頂端G的仰角∠GEF60°,點A、B、C三點在同一水平線上.

(1)計算古樹BH的高;

(2)計算教學(xué)樓CG的高.(參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A1A2,A3,分別在x軸上,點B1,B2,B3,分別在直線yx上,OA1B1,B1A1A2,B1B2A2B2A2A3,B2B3A3,都是等腰直角三角形,如果OA11,則點A2019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為的籬笆,一面利用墻(墻的最大可用長度為),圍成中間隔有一道籬笆(平行于)的矩形花圃.設(shè)花圃的一邊

________(用含的代數(shù)式表示),矩形的面積________(用含的代數(shù)式表示);

如果要圍成面積為的花圃,的長是多少?

中表示矩形的面積的代數(shù)式通過配方,問:當(dāng)等于多少時,能夠使矩形花圃面積最大,最大的面積為多少?

查看答案和解析>>

同步練習(xí)冊答案