【題目】如圖,對(duì)角線AC將正方形ABCD分成兩個(gè)等腰三角形,點(diǎn)E,F將對(duì)角線AC三等分,且AC=15,點(diǎn)P在正方形的邊上,則滿(mǎn)足PE+PF=5的點(diǎn)P的個(gè)數(shù)是( 。
A.0B.4C.8D.16
【答案】B
【解析】
作點(diǎn)F關(guān)于BC的對(duì)稱(chēng)點(diǎn)M,連接CM,連接EM交BC于點(diǎn)P,可得點(diǎn)P到點(diǎn)E和點(diǎn)F的距離之和最小=EM,由勾股定理求出,即可得解.
解:作點(diǎn)F關(guān)于BC的對(duì)稱(chēng)點(diǎn)M,連接CM,連接EM交BC于點(diǎn)P,如圖所示:
則PE+PF的值最。EM;
∵點(diǎn)E,F將對(duì)角線AC三等分,且AC=15,
∴EC=10,FC=5=AE,
∵點(diǎn)M與點(diǎn)F關(guān)于BC對(duì)稱(chēng),
∴CF=CM=5,∠ACB=∠BCM=45°,
∴∠ACM=90°,
∴,
同理:在線段AB,AD,CD上都存在1個(gè)點(diǎn)P,使;
∴滿(mǎn)足的點(diǎn)P的個(gè)數(shù)是4個(gè);
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個(gè)平面圖形.如圖1是一個(gè)四邊形的木架,AB=AD=2cm,BC=5cm.
(1)扭動(dòng)這個(gè)木架,四邊形的形狀就會(huì)改變,這說(shuō)明了什么?
(2)如圖2,若固定三根木條AB、BC、AD不動(dòng),量得第四根木條CD=5cm,判斷此時(shí)∠B與∠D是否相等,并說(shuō)明理由.
(3)在扭動(dòng)這個(gè)木架過(guò)程中,當(dāng)測(cè)得A、C之間的距離為6cm時(shí),若CD的長(zhǎng)度也是整數(shù),那么CD的長(zhǎng)應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+(a﹣5)x+5.
(1)該拋物線與y軸交點(diǎn)的坐標(biāo)為 ;
(2)當(dāng)a=﹣1時(shí),求該拋物線與x軸的交點(diǎn)坐標(biāo);
(3)已知兩點(diǎn)A(2,0)、B(3,0),拋物線y=x2+(a﹣5)x+5與線段AB恰有一個(gè)交點(diǎn)求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在和中,,點(diǎn)為中點(diǎn),,,點(diǎn)、關(guān)于成軸對(duì)稱(chēng),連接、.
(1)求證:為等邊三角形;
(2)連接,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠甲、乙兩名工人參加操作技能培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績(jī)中隨機(jī)抽取8次,記錄如下:
甲 | 95 | 82 | 88 | 81 | 93 | 79 | 84 | 78 |
乙 | 83 | 92 | 80 | 95 | 90 | 80 | 85 | 75 |
(1)請(qǐng)你計(jì)算這兩組數(shù)據(jù)的平均數(shù)、中位數(shù);
(2)現(xiàn)要從中選派一人參加操作技能比賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪名工人參加合適?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求證:OF∥BC;
(2)求證:△AFO≌△CEB;
(3)若EB=5cm,CD=cm,設(shè)OE=x,求x值及陰影部分的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過(guò)點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=4.
(1)求拋物線的函數(shù)表達(dá)式.
(2)當(dāng)t為何值時(shí),矩形ABCD的周長(zhǎng)有最大值?最大值是多少?
(3)保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹(shù)頂端B的仰角是30,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹(shù)的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:如果,是一元二次方程的兩根,那么有,.這是一元二次方程根與系數(shù)的關(guān)系,我們利用它可以用來(lái)解題,例,是方程的兩根,求的值.解法可以這樣:
∵,,則.
請(qǐng)你根據(jù)以上解法解答下題:
已知,是方程的兩根,求:
的值;
的值.
試求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com