【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點(diǎn)A,D在x軸的正半軸,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B,E是雙曲線y1=與直線y2=mx+n的交點(diǎn),OA=2,OC=6.
(1)求k的值;
(2)求正方形ADEF的邊長;
(3)直接寫出不等式>mx+n的解集.
【答案】(1)k=12;(2);(3)0<x<2或x>
【解析】
(1)根據(jù)OA=2,OC=6, 可得點(diǎn)B坐標(biāo)為(2,6),代入反比例函數(shù)的解析式即可解答;(2)由(1)解得反比例函數(shù)解析式為y= ,設(shè)AD=t,則OD=2+t,所以E點(diǎn)坐標(biāo)為(2+t,t),再根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得(2+t)t=12,利用因式分解法可求出t的值;(3)反比例函數(shù)的函數(shù)值大于一次函數(shù),即對應(yīng)相同的x的值時(shí),一反比例函數(shù)對應(yīng)的點(diǎn)在一次函數(shù)的圖象的點(diǎn)的上邊,據(jù)此即可判斷.
解:(1)∵OA=2,OC=6, ∴點(diǎn)B坐標(biāo)為(2,6)
∴ ,∴k=12;
(2)設(shè)正方形邊長為a,則點(diǎn)E坐標(biāo)為(a+2,a),
∴a(a+2)=12,解得:a=,
又a>0,∴a=;
(3)不等式>mx+n的解集是:0<x<2或x>
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過點(diǎn)A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的弦AB=4cm,點(diǎn)C為優(yōu)弧上的動點(diǎn),且∠ACB=30°.若弦DE經(jīng)過弦AC、BC的中點(diǎn)M、N,則DM+EN的最大值是_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=5,BC=8,點(diǎn)E為AD上一個(gè)動點(diǎn),把△ABE沿BE折疊,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)F,連接DF,連接CF.當(dāng)點(diǎn)F落在矩形內(nèi)部,且CF=CD時(shí),AE的長為( ).
A. 3B. 2.5C. 2D. 1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有一座圓弧形拱橋,
(1)如圖1,請用尺規(guī)作出圓弧所在圓的圓心O;
(2)如圖2,過點(diǎn)O作OC⊥AB于點(diǎn)D,交圓弧于點(diǎn)C,CD=2.4 m.橋下水面寬度AB為7.2 m,現(xiàn)有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經(jīng)過拱橋,請通過計(jì)算說明此貨船能否順利通過這座拱橋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把(sinα)2記作sin2α,根據(jù)圖1和圖2完成下列各題.
(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;
(2)觀察上述等式猜想:在Rt△ABC中,∠C=90°,總有sin2A+cos2A= ;
(3)如圖2,在Rt△ABC中證明(2)題中的猜想:
(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)B,A,D在一條直線上,連接BE,CD,M,N分別為BE,CD的中點(diǎn).
(1)求證:①BE=CD;②△AMN是等腰三角形;
(2)在圖①的基礎(chǔ)上,將△ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)180°,其他條件不變,得到圖②所示的圖形.請直接寫出(1)中的兩個(gè)結(jié)論是否仍然成立;
(3)在(2)的條件下,請你在圖②中延長ED交線段BC于點(diǎn)P.求證:△PBD∽△AMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)綜合實(shí)踐活動中,小明計(jì)劃測量城門大樓的高度,在點(diǎn)B處測得樓頂A的仰角為22°,他正對著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺D處,并測得此時(shí)樓頂A的仰角為45°.
(1)求城門大樓的高度;
(2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com