已知:如圖,在△ABC中,點A1,B1,C1分別是BC、AC、AB的中點,A2,B2,C2分別是B1C1,A1C1,A1B1的中點,依此類推….若△ABC的周長為1,則△AnBnCn的周長為
 

考點:三角形中位線定理
專題:規(guī)律型
分析:由于A1、B1、C1分別是△ABC的邊BC、CA、AB的中點,就可以得出△A1B1C1∽△ABC,且相似比為
1
2
,△A2B2C2∽△ABC的相似比為
1
4
,依此類推△AnBnCn∽△ABC的相似比為
1
2n
解答:解:∵A1、B1、C1分別是△ABC的邊BC、CA、AB的中點,
∴A1B1、A1C1、B1C1是△ABC的中位線,
∴△A1B1C1∽△ABC,且相似比為
1
2
,
∵A2、B2、C2分別是△A1B1C1的邊B1C1、C1A1、A1B1的中點,
∴△A2B2C2∽△A1B1C1且相似比為
1
2
,
∴△A2B2C2∽△ABC的相似比為
1
4

依此類推△AnBnCn∽△ABC的相似比為
1
2n
,
∵△ABC的周長為1,
∴△AnBnCn的周長為
1
2n

故答案為:
1
2n
點評:本題考查了三角形中位線定理的運用,相似三角形的判定與性質(zhì)的運用,解題的關(guān)鍵是熟練運用相似三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

為提高居民的節(jié)水意識,向陽小區(qū)開展了“建設(shè)節(jié)水型社區(qū),保障用水安全”為主題的節(jié)水宣傳活動,小瑩同學(xué)積極參與小區(qū)的宣傳活動,并對小區(qū)300戶家庭用水情況進行了抽樣調(diào)查,他在300戶家庭中,隨機調(diào)查了50戶家庭5月份的用水量情況,結(jié)果如圖所示.
(1)試估計該小區(qū)5月份用水量不高于12t的戶數(shù)占小區(qū)總戶數(shù)的百分比;
(2)把圖中每組用水量的值用該組的中間值(如0~6的中間值為3)來替代,估計該小區(qū)5月份的用水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

菱形ABCD的對角線AC,BD相交于點O,AC=4
3
,BD=4,動點P在線段BD上從點B向點D運動,PF⊥AB于點F,四邊形PFBG關(guān)于BD對稱,四邊形QEDH與四邊形PFBG關(guān)于AC對稱.設(shè)菱形ABCD被這兩個四邊形蓋住部分的面積為S1,未被蓋住部分的面積為S2,BP=x.
(1)用含x的代數(shù)式分別表示S1,S2;
(2)若S1=S2,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在四個完全相同的小球上分別寫上1,2,3,4四個數(shù)字,然后裝入一個不透明的口袋內(nèi)攪勻,從口袋內(nèi)取出一個球記下數(shù)字后作為點P的橫坐標x,放回袋中攪勻,然后再從袋中取出一個球記下數(shù)字后作為點P的縱坐標y,則點P(x,y)落在直線y=-x+5上的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

據(jù)國網(wǎng)江蘇電力公司分析,我省預(yù)計今夏統(tǒng)調(diào)最高用電負荷將達到86000000千瓦,這個數(shù)據(jù)用科學(xué)記數(shù)法可表示為
 
千瓦.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖2是裝有三個小輪的手拉車在“爬”樓梯時的側(cè)面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC,且∠AOB=120°,折線NG-GH-HE-EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點H在線段OB時,則
BH
OH
的值是
 
;
(2)如果一級樓梯的高度HE=(8
3
+2)cm,點H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,折線段AOB將面積為S的⊙O分成兩個扇形,大扇形、小扇形的面積分別為S1、S2,若
S1
S
=
S2
S1
=0.618,則稱分成的小扇形為“黃金扇形”.生活中的折扇(如圖2)大致是“黃金扇形”,則“黃金扇形”的圓心角約為
 
°.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
m-1
x
的圖象在同一象限內(nèi),y隨x增大而增大,則m的值可以是
 
(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某研究所將某種材料加熱到1000℃時停止加熱,并立即將材料分為A、B兩組,采用不同工藝做降溫對比實驗,設(shè)降溫開始后經(jīng)過x min時,A、B兩組材料的溫度分別為yA℃、yB℃,yA、yB與x的函數(shù)關(guān)系式分別為yA=kx+b,yB=
1
4
(x-60)2+m(部分圖象如圖所示),當(dāng)x=40時,兩組材料的溫度相同.
(1)分別求yA、yB關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)A組材料的溫度降至120℃時,B組材料的溫度是多少?
(3)在0<x<40的什么時刻,兩組材料溫差最大?

查看答案和解析>>

同步練習(xí)冊答案