如圖,在平面直角坐標(biāo)系中,直線y=-
1
2
x+b(b>0)
分別交x軸、y軸于A、B兩點.點C(4,0)、D(8,0),以CD為一邊在x軸上方作矩形CDEF,且CF:CD=1:2.設(shè)矩形CDEF與△ABO重疊部分的面積為S.
(1)求點E、F的坐標(biāo);
(2)當(dāng)b值由小到大變化時,求S與b的函數(shù)關(guān)系式;
(3)若在直線y=-
1
2
x+b(b>0)
上存在點Q,使∠OQC等于90°,請直接寫出b的取值范圍.
(1)∵C(4,0)D(8,0),
∴CD=4,
∵矩形CDEF,且CF:CD=1:2
∴CF=DE=2,
∵E、F在第一象限
∴E(8,2),F(xiàn)(4,2);

(2)由題意知:A(2b,0)B(0,b)在直角三角形ADH中,tan∠BAO=
1
2

①當(dāng)0<b≤2時,如圖,S=0
②當(dāng)2<b≤4時,如圖,設(shè)AB交CF于G,AC=2b-4
∵在直角三角形中,tan∠BAO=
1
2
∴CG=b-2
∴S=
1
2
(2b-4)(b-2)
,即S=b2-4b+4
③當(dāng)4<b≤6,如圖,設(shè)AB交EF于點G
AD=2b-8
∵在直角三角形ADH中,tan∠BAO=
1
2

∴DH=b-4 EH=6-b
在矩形CDEF中
∵CDEF
∴∠EGH=∠BAO
在直角三角形EGH中tan∠EGH=
EH
EG
=
1
2

∴EG=12-2b
∴S=2×4-
1
2
(12-2b)(6-b)
=-b2+12b-28
④當(dāng)b>6時,如圖,S=8;

(3)設(shè)Q(x,-
1
2
x+b),
∵∠OQC=90°,
∴OQ2+CQ2=OC2,
∴[x2+(-
1
2
x+b)2]+[(x-4)2+(-
1
2
x+b)2]=16,
∵存在Q,
∴△≥0,
求得:b≤
5
+1,
由已知可得:0<b≤
5
+1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,⊙C與y軸相切,且C點坐標(biāo)為(1,0),直線l過點A(-1,0),與⊙C相切于點D,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某航空公司規(guī)定,旅客乘機所攜帶行李的質(zhì)量x(kg)與其運費y(元)之間是一次函數(shù)關(guān)系,其圖象如圖所示,求其解析式以及旅客最多可攜帶免費行李的最大重量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=
8
3
3
,邊AB的垂直平分線CD分別與AB、x軸、y軸交于點C、G、D.
(1)求點G的坐標(biāo);
(2)求直線CD的解析式;
(3)在直線CD上和平面內(nèi)是否分別存在點Q、P,使得以O(shè)、D、P、Q為頂點的四邊形是菱形?若存在,求出點Q得坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形OABC邊長為2,O是直角坐標(biāo)系的原點,點A,C分別在x軸,y軸上.點P沿著正方形的邊,按O→A→B的順序運動,設(shè)點P經(jīng)過的路程為x,△OPB的面積為y.
(1)求出y與x之間的函數(shù)關(guān)系式,寫出自變量x的取值范圍;
(2)探索:當(dāng)y=
1
4
時,點P的坐標(biāo);
(3)是否存在經(jīng)過點(0,-1)的直線平分正方形OABC的面積?如果存在,求出這條直線的解析式;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知,如圖點A(1,1),B(2,-3),點P為x軸上一點,當(dāng)|PA-PB|最大時,點P的坐標(biāo)為( 。
A.(
1
2
,0)
B.(
5
4
,0)
C.(-
1
2
,0)
D.(1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,函數(shù)y=x的圖象l是第一、三象限的角平分線.
(1)實驗與探究:由圖觀察易知A(0,2)關(guān)于直線l的對稱點A′的坐標(biāo)為(2,0),請在圖中分別標(biāo)明B(5,3)、C(-2,5)關(guān)于直線l的對稱點B′、C′的位置,并寫出它們的坐標(biāo):B′______、C′______;
(2)歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點的坐標(biāo),你會發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點P(m,n)關(guān)于第一、三象限的角平分線l的對稱點P′的坐標(biāo)為______;
(3)類比與猜想:坐標(biāo)平面內(nèi)任一點P(m,n)關(guān)于第二、四象限的角平分線的對稱點P′的坐標(biāo)為______;
(4)運用與拓廣:已知兩點D(0,-3)、E(-1,-4),試在第一、三象限的角平分線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一報刊銷售亭從報社訂購某晚報的價格是每份0.7元,銷售價是每份1元,賣不掉的報紙還可以以0.2元的價格退還給報社,在一個月內(nèi)(以30天計算)有20天每天可賣出100份,其余10天每天只能賣出60份,但每天報亭從報社訂購的份數(shù)必須相同,若以報亭每天從報社訂購的報紙份數(shù)為自變量x,每月所獲得的利潤為函數(shù)y.
(1)寫出y與x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)報亭應(yīng)該每天從報社訂購多少份報紙才能使每月獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線y=-
3
4
x+3
交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O(shè)1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

同步練習(xí)冊答案