【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過(guò)點(diǎn),且為雙曲線(xiàn)上的一點(diǎn),為坐標(biāo)平面上一動(dòng)點(diǎn),垂直于軸,垂直于軸,垂足分別是、.
(1)寫(xiě)出正比例函數(shù)和反比例函數(shù)的關(guān)系式.
(2)當(dāng)點(diǎn)在直線(xiàn)上運(yùn)動(dòng)時(shí),直線(xiàn)上是否存在這樣的點(diǎn),使得與的面積相等?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)正比例函數(shù)的解析式為,反比例函數(shù)的解析式為;
(2)在直線(xiàn)上存在這樣的點(diǎn)或,使得與面積相等.
【解析】
(1)用待定系數(shù)法進(jìn)行求解,即可得到正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)當(dāng)點(diǎn)Q在直線(xiàn)MO上運(yùn)動(dòng)時(shí),假設(shè)在直線(xiàn)MO上存在這樣的點(diǎn)Q(x,x),使得△OBQ與△OAP面積相等,則B(0,x).根據(jù)三角形的面積公式列出關(guān)于x的方程,解方程即可.
(1)設(shè)反比例函數(shù)的解析式為,正比例函數(shù)的解析式為.
∵正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過(guò)點(diǎn),∴,. ∴,.
∴正比例函數(shù)的解析式為,反比例函數(shù)的解析式為.
(2)當(dāng)點(diǎn)在直線(xiàn)上運(yùn)動(dòng)時(shí),假設(shè)在直線(xiàn)上存在這一的點(diǎn),使得與面積相等,則.
∵,∴,解得.
當(dāng)時(shí),. 當(dāng)時(shí),.
故在直線(xiàn)上存在這樣的點(diǎn)或,使得與面積相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:如圖 1,在和中,,連接 交的延長(zhǎng)線(xiàn)于點(diǎn).則的值是____________.
問(wèn)題解決:如圖 2,在問(wèn)題背景的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),點(diǎn)始終在的外部,所在直線(xiàn)交于點(diǎn),若,當(dāng)點(diǎn)與點(diǎn)重合時(shí),的長(zhǎng)是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在矩形OABC中,OA=4,OC=3,分別以OC、OA所在的直線(xiàn)為x軸、y軸,建立如圖所示的坐標(biāo)系,連接OB,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)線(xiàn)段OB的中點(diǎn)D,并與矩形的兩邊交于點(diǎn)E和點(diǎn)F,直線(xiàn)l:y=kx+b經(jīng)過(guò)點(diǎn)E和點(diǎn)F.
(1)寫(xiě)出中點(diǎn)D的坐標(biāo) ,并求出反比例函數(shù)的解析式;
(2)連接OE、OF,求△OEF的面積;
(3)如圖②,將線(xiàn)段OB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度,使得點(diǎn)B的對(duì)應(yīng)點(diǎn)H恰好落在x軸的正半軸上,連接BH,作OM⊥BH,點(diǎn)N為線(xiàn)段OM上的一個(gè)動(dòng)點(diǎn),求HN+ON的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫(xiě)出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)與x軸交于點(diǎn)A(1, 0),B(-7, 0),頂點(diǎn)D坐標(biāo)為(-3,),點(diǎn)C在y軸的正半軸上,CD交x軸于點(diǎn)F,△CAD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CFE,點(diǎn)A恰好旋轉(zhuǎn)到點(diǎn)F,連接BE.過(guò)頂點(diǎn)D作DD1⊥x軸于點(diǎn)D1
(1)求拋物線(xiàn)的表達(dá)式
(2)求證:四邊形BFCE是平行四邊形.
(3)點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),當(dāng)P在B點(diǎn)左側(cè)時(shí),過(guò)點(diǎn)P作PM⊥x軸,點(diǎn)M為垂足,請(qǐng)問(wèn)是否存在P點(diǎn)使得△PAM與△DD1A相似,如果存在,請(qǐng)寫(xiě)出點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)(,,是常數(shù),)經(jīng)過(guò)點(diǎn)A(,)和點(diǎn)B (,),且拋物線(xiàn)的對(duì)稱(chēng)軸在軸的左側(cè). 下列結(jié)論: ① ; ② 方程 有兩個(gè)不等的實(shí)數(shù)根; ③. 其中,正確結(jié)論的個(gè)數(shù)是( ).
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)種子店都銷(xiāo)售“黃金1號(hào)”玉米種子.在甲店,該種子的價(jià)格為 5元 / kg,如果一次購(gòu)買(mǎi)2 kg 以上的種子,超過(guò) 2 kg 部分的種子的價(jià)格打8折.在乙店,不論一次購(gòu)買(mǎi)該種子的數(shù)量是多少,價(jià)格均為4.5 元 / kg.
(1)根據(jù)題意,填寫(xiě)下表:
(2)設(shè)一次購(gòu)買(mǎi)種子的數(shù)量為 kg(). 在甲店購(gòu)買(mǎi)的付款金額記為元,在乙店購(gòu)買(mǎi)的付款金額為元,分別求,關(guān)于的函數(shù)解析式;
(3) 若在同一店中一次購(gòu)買(mǎi)種子的付款金額是36元,則最多可購(gòu)買(mǎi)種子______ kg.若在同一店中一次購(gòu)買(mǎi)種子10 kg,則最少付款金額是________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn):與軸、軸交于、兩點(diǎn),與反比例函數(shù)的圖像交于點(diǎn),且.
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)是直線(xiàn)上一點(diǎn),過(guò)點(diǎn)作軸的平行線(xiàn)交反比例函數(shù)和的圖像于,兩點(diǎn),連,,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)為直線(xiàn)上一點(diǎn),點(diǎn)為延長(zhǎng)線(xiàn)上一點(diǎn),且,連接.
求證:;
當(dāng)時(shí),求的度數(shù);
點(diǎn)是的外心,當(dāng)點(diǎn)在直線(xiàn)上運(yùn)動(dòng),且點(diǎn)恰好在內(nèi)部或邊上時(shí),直接寫(xiě)出點(diǎn)運(yùn)動(dòng)的路徑的長(zhǎng),
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com