【題目】正多邊形的一個內(nèi)角為135°,則該多邊形的邊數(shù)為(
A.9
B.8
C.7
D.4

【答案】B
【解析】解:∵正多邊形的一個內(nèi)角為135°, ∴外角是180﹣135=45°,
∵360÷45=8,
則這個多邊形是八邊形,
故選B.
【考點(diǎn)精析】利用多邊形內(nèi)角與外角對題目進(jìn)行判斷即可得到答案,需要熟知多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-278×1=( )
A.0
B.278
C.1
D.-278

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=-3(x-6)2+9的頂點(diǎn)坐標(biāo)是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課堂上,老師給出了如下一道探究題:“如圖,在邊長為1的正方形組成的6×8的方格中,△ABC和△A1B1C1的頂點(diǎn)都在格點(diǎn)上,且△ABC≌△A1B1C1 . 請利用平移或旋轉(zhuǎn)變換,設(shè)計(jì)一種方案,使得△ABC通過一次或兩次變換后與△A1B1C1完全重合.”

(1)小明的方案是:“先將△ABC向右平移兩個單位得到△A2B2C2 , 再通過旋轉(zhuǎn)得到△A1B1C1”.請根據(jù)小明的方案畫出△A2B2C2 , 并描述旋轉(zhuǎn)過程;
(2)小紅通過研究發(fā)現(xiàn),△ABC只要通過一次旋轉(zhuǎn)就能得到△A1B1C1 . 請?jiān)趫D中標(biāo)出小紅方案中的旋轉(zhuǎn)中心P,并簡要說明你是如何確定的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果對頂角互補(bǔ),那么兩條直線互相________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖。

(1)觀察發(fā)現(xiàn):如圖1,已知Rt△ABC,∠ABC=90°,分別以AB,BC為邊,向外作正方形ABDE和正方形BCFG,連接DG.若M是DG的中點(diǎn),不難發(fā)現(xiàn):BM= AC.
請完善下面證明思路:①先根據(jù) ,證明BM= DG;②再證明 ,得到DG=AC;所以BM= AC;
(2)數(shù)學(xué)思考:若將上題的條件改為:“已知Rt△ABC,∠ABC=90°,分別以AB,AC為邊向外作正方形ABDE和正方形ACHI,N是EI的中點(diǎn)”,則相應(yīng)的結(jié)論“AN= BC”成立嗎?小穎通過添加如圖2所示的輔助線驗(yàn)證了結(jié)論的正確性.請寫出小穎所添加的輔助線的作法,并由此證明該結(jié)論;
(3)拓展延伸:如圖3,已知等腰△ABC和等腰△ADE,AB=AC,AD=AE.連接BE,CD,若P是CD的中點(diǎn),探索:當(dāng)∠BAC與∠DAE滿足什么條件時(shí),AP= BE,并簡要說明證明思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,對稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點(diǎn),拋物線與x軸的另一交點(diǎn)為A

(1)求拋物線的解析式;

(2)若點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),設(shè)四邊形COBP的面積為S,求S的最大值;

(3)如圖2,若M是線段BC上一動點(diǎn),在x軸是否存在這樣的點(diǎn)Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過點(diǎn)F作DE∥BC交AB于點(diǎn)D,交AC于點(diǎn)E,那么下列結(jié)論: ①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長等于AB與AC的和;④BF=CF.其中正確的有 . (填正確的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,D,E為斜邊AB上的兩個點(diǎn),且BD=BC,AE=AC,則∠DCE的大小為(度).

查看答案和解析>>

同步練習(xí)冊答案