【題目】閱讀下列材料:
我們可以通過下列步驟估計的大。
第一步:因為12=1,22=4,1<2<4,所以1<<2.
第二步:通過取1和2的平均數(shù)縮小所在的范圍:取,
因為1.52=2.25,2<2.25,所以1<<1.5.
(1)請仿照第一步,通過運算,確定界于哪兩個相鄰的整數(shù)之間?
(2)在1<<1.5的基礎(chǔ)上,重復(fù)應(yīng)用第二步中取平均數(shù)的方法,將所在的范圍縮小至m<<n,使得n-m=.
【答案】(1)界于8和9相鄰的整數(shù)之間;(2)1.375<<1.5.
【解析】
(1)根據(jù)第一步,由82=64,92=81,即可確定界于哪兩個相鄰的整數(shù)之間;
(2)先根據(jù)第二步中取平均數(shù)的方法,求1和1.5的平均數(shù),
再求得1.25<<1.5;同理再求1.25和1.5的平均數(shù),得到1.375<<1.5,從而得出結(jié)論.
解:(1)因為82=64,92=81,64<66<81,所以8<<9;
(2)通過取1和1.5的平均數(shù)確定所在的范圍:取,因為1.252=1.5625,1.5625<2,所以1.25<<1.5,n-m=1.5-1.25=0.25>;
通過取1.25和1.5的平均數(shù)確定所在的范圍:取,因為1.3752=1.890625,1.890625<2,所以1.375<<1.5,n-m=1.5-1.375=0.125=.
故1.375<<1.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點,連接PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連接CQ.
(1) 觀察并猜想AP與CQ之間的大小關(guān)系,并證明你的結(jié)論;
(2) 若PA:PB:PC=3:4:5,連接PQ,試判斷△PQC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2m2x+2交y軸于A點,交直線x=4于B點.
(1)拋物線的對稱軸為x=_____(用含m的代數(shù)式表示);
(2)若AB∥x軸,求拋物線的表達(dá)式;
(3)記拋物線在A,B之間的部分為圖象G(包含A,B兩點),若對于圖象G上任意一點P(xp,yp),yp≤2,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園有一個拋物線形狀的觀景拱橋ABC,其橫截面如圖所示,在圖中建立的直角坐標(biāo)系中,拋物線的解析式為y=﹣+c且過頂點C(0,5)(長度單位:m)
(1)直接寫出c的值;
(2)現(xiàn)因搞慶典活動,計劃沿拱橋的臺階表面鋪設(shè)一條寬度為1.5m的地毯,地毯的價格為20元/m2,求購買地毯需多少元?
(3)在拱橋加固維修時,搭建的“腳手架”為矩形EFGH(H、G分別在拋物線的左右側(cè)上),并鋪設(shè)斜面EG.已知矩形EFGH的周長為27.5m,求斜面EG的傾斜角∠GEF的度數(shù).(精確到0.1°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某住宅小區(qū)在住宅建設(shè)時留下一塊1798平方米的矩形空地,準(zhǔn)備建一個矩形的露天游泳池,設(shè)計圖如圖所示,游泳池的長是寬的2倍,在游泳池的前側(cè)留一塊5米寬的空地,其他三側(cè)各保留2米寬的道路及1米寬的綠化帶.
(1)請你計算出游泳池的長和寬;
(2)已知貼1平方米瓷磚需費用50元,若游泳池深3米,現(xiàn)要把池底和池壁(共5個面)都貼上瓷磚,共需要費用多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經(jīng)過點C.過點C作⊙O的切線交AB的延長線于點P.點D為圓上一點,且BC=CD ,弦AD的延長線交切線PC于點E,連接BC.
(1)判斷OB和BP的數(shù)量關(guān)系,并說明理由;
(2)若⊙O的半徑為2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離(取1.73,結(jié)果精確到0.1千米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com