【題目】如圖,平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為:A(1,2),B(2, 一1), C (4, 3).
(1)將△ABC向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得△A'B'C'.畫出△A'B'C',并寫出△A'B'C'的頂點(diǎn)坐標(biāo);
(2)求△ABC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=AC,BE平分∠ABC交邊AC于E.
(1)如圖(1),當(dāng)∠BAC=108°時(shí),證明:BC=AB+CE;
(2)如圖(2),當(dāng)∠BAC=100°時(shí),(1)中的結(jié)論還成立嗎?若不成立,是否有其他兩條線段之和等于BC,若有請(qǐng)寫出結(jié)論并完成證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表:
平均數(shù)/分 | 中位數(shù)/分 | 眾數(shù)/分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
(2)結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;
(3)計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)廣場(chǎng)上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為4米,落在斜坡上的影長(zhǎng)CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長(zhǎng)QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,A,C,且滿足過(guò)點(diǎn)C作CB⊥軸于點(diǎn)B.
(1)
(2)在軸上是否存在點(diǎn)P,使得三角形ABC和三角形ACP的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②,若過(guò)點(diǎn)B作BD∥AC交軸于點(diǎn)D,且AE、DE分別平分∠CAB、∠ODB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:
身高情況分組表(單位:cm)
組別 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,回答下列問(wèn)題:
(1)樣本中,男生的身高眾數(shù)在 組,中位數(shù)在 組;
(2)樣本中,女生身高在E組的人數(shù)有 人;
(3)已知該校共有男生400人,女生380人,請(qǐng)估計(jì)身高在160≤x<170之間的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.
其中正確的結(jié)論有( )
A. 5個(gè) B. 4個(gè)
C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中, A、B兩點(diǎn)分別在x軸、y軸的正半軸上,且OB = OA=3.(1)、求點(diǎn)A、B的坐標(biāo);(2)、已知點(diǎn)C(-2,2),求△BOC的面積;(3)、點(diǎn)P是第一象限角平分線上一點(diǎn),若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com