【題目】某超市有甲、乙兩種商品,若買1件甲商品和2件乙商品,共需80元;若買2件甲商品和3件乙商品,共需135元.
(1)求甲、乙兩種商品每件售價分別是多少元;
(2)甲商品每件的成本是20元,根據(jù)市場調(diào)查:若按(1)中求出的單價銷售,該超市每天銷售甲商品100件;若銷售單價每上漲1元,甲商品每天的銷售量就減少5件.寫出甲商品每天的銷售利潤y(元)與銷售單價(x)元之間的函數(shù)關(guān)系,并求每件售價為多少元時,甲商品每天的銷售利潤最大,最大利潤是多少?
【答案】(1)甲、乙兩種商品每件售價分別是30元和25元;(2)銷售單價為35元時,甲商品每天的銷售利潤最大,最大利潤是1125元
【解析】
(1)設(shè)甲、乙兩種商品每件售價分別是a元,b元,根據(jù)題意列方程組即可得到結(jié)論;
(2)由題意列出關(guān)于x,y的函數(shù)關(guān)系式;把函數(shù)關(guān)系式配方即可得到結(jié)果.
解:(1)設(shè)甲、乙兩種商品每件售價分別是a元,b元,由題意列方程組得:
,
解得:,
答:甲、乙兩種商品每件售價分別是30元和25元;
(2)由題意得,y=(x﹣20)[100﹣5(x﹣30)]=﹣5x2+350x﹣5000,
∵y=﹣5x2+350x﹣5000=﹣5(x﹣35)2+1125,
∴當(dāng)x=35時,y最大=1125,
∴銷售單價為35元時,甲商品每天的銷售利潤最大,最大利潤是1125元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD,將△AMP和△BPQ分別沿PM和PQ折疊(AP>AM),點A和點B都與點E重合;再將△CQD沿DQ折疊,點C落在線段EQ上點F處.
(1)判斷△AMP,△BPQ,△CQD和△FDM中有哪幾對相似三角形?(不需說明理由)
(2)如果AM=1,sin∠DMF=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC內(nèi)接于⊙O,∠BCA=90°,∠CBA=60°,AB=10,點D是AB邊上(異于點A,B)的一動點,DE⊥AB交⊙O于點E,交AC于點G,交切線CF于點F.
(1)求證:FC=CG;
(2)①當(dāng)AE= 時,四辺形BOEC為菱形;
②當(dāng)AD= 時,OG∥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,CD⊥AB,垂足為E,連接BC、BD.點F為線段CB上一點,連接DF,若CE=2,AB=8,BF=,則tan∠CDF=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)了:籃球,:足球,:跳繩,:健美操四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校范圍內(nèi)隨機抽取若干名學(xué)生,進行問卷調(diào)查(每個被調(diào)查的同學(xué)必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共查了 名學(xué)生;
(2)請補全兩幅統(tǒng)計圖;
(3)若有3名最喜歡足球運動的學(xué)生,1名最喜歡跳繩運動的學(xué)生組隊外出參加一次聯(lián)誼互動,欲從中選出2人擔(dān)任組長(不分正副),求兩人均是最喜歡足球運動的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以一個等腰直角三角形的腰為邊分別向形外做等邊三角形,我們把這兩個等邊三角形重心之間的距離稱作這個等腰直角三角形的“肩心距”.如果一個等腰直角三角形的腰長為2,那么它的“肩心距” .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明農(nóng)場準備修建一個矩形苗圃園,苗圃一邊靠墻,其他三邊用長為48米的籬笆圍成.已知墻長為米.設(shè)苗圃園垂直于墻的一邊長為米.
(1)求當(dāng)為多少米時,苗圃園面積為280平方米;
(2)若=22米,當(dāng)取何值時,苗圃園的面積最大,并求最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)之間成如圖所示的反比例函數(shù)關(guān)系,則眼鏡度數(shù)y與鏡片焦距x之間的函數(shù)解析式為( )
A. y=200x B. y= C. y=100x D. y=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com