【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點E是BC上的一個動點,EG⊥AB,EF⊥AC,CD⊥AB,點G,F(xiàn),D分別是垂足.求證:CD=EG+EF;
猜想探究:

(2)如圖2,在△ABC中,AB=AC,點E是BC的延長線上的一個動點,EG⊥AB于G,EF⊥AC交AC延長線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關(guān)系為;

(3)如圖3,邊長為10的正方形ABCD的對角線相交于點O、H在BD上,且BH=BC,連接CH,點E是CH上一點,EF⊥BD于點F,EG⊥BC于點G,則EF+EG=

【答案】
(1)

證明:如圖1,連接AE,

∵EG⊥AB,EF⊥AC,CD⊥AB,

∵SABC=SABE+SACE

ABCD= ABEG+ ACEF,

∵AB=AC,

∴CD=EG+EF


(2)CD=EG﹣EF
(3)5
【解析】第(2)問:解:CD=EG﹣EF,
理由:連接AE,

∵EG⊥AB,EF⊥AC,CD⊥AB,
∵SABC=SABE﹣SACE ,
ABCD= ABEG﹣ ACEF,
∵AB=AC,
∴CD=EG﹣EF;
故答案為:CD=EG﹣EF;
第(3)問:

解:∵四邊形ABCD是正方形,
∴AB=BC=10,∠ABC=90°,AC⊥BD,
∴AC=10 ,
∴OC= AC=5
連接BE.
∵EF⊥BD于點F,EG⊥BC于點G,
∵SBCH=SBCE+SBHE ,
BHOC= BCEG+ BHEF,
∴OC=EG+EF=5 ,
故答案為:5
(1)根據(jù)SABC=SABE+SACE , 得到 ABCD= ABEG+ ACEF,根據(jù)等式的性質(zhì)即可得到結(jié)論;(2)由于SABC=SABE﹣SACE , 于是得到 ABCD= ABEG﹣ ACEF,根據(jù)等式的性質(zhì)即可得到結(jié)論;(3)根據(jù)正方形的性質(zhì)得到AB=BC=10,∠ABC=90°,AC⊥BD,根據(jù)勾股定理得到AC=10 ,由于SBCH=SBCE+SBHE , 得到 BHOC= BCEG+ BHEF,根據(jù)等式的性質(zhì)即可得到結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于P(a,b)和點Q(a,b′),給出如下定義:若b′= ,則稱點Q為點P的限變點.例如:點(2,3)的限變點的坐標是(2,3),點(﹣2,5)的限變點的坐標是(﹣2,﹣5).
(1)點( ,1)的限變點的坐標是;
(2)判斷點A(﹣2,﹣1)、B(﹣1,2)中,哪一個點是函數(shù)y= 圖象上某一個點的限變點?并說明理由;
(3)若點P(a,b)在函數(shù)y=﹣x+3的圖象上,其限變點Q(a,b′)的縱坐標的取值范圍是﹣6≤b′≤﹣3,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B,C的坐標分別為(1,0),(0,1),(﹣1,0).一個電動玩具從坐標原點0出發(fā),第一次跳躍到點P1 . 使得點P1與點O關(guān)于點A成中心對稱;第二次跳躍到點P2 , 使得點P2與點P1關(guān)于點B成中心對稱;第三次跳躍到點P3 , 使得點P3與點P2關(guān)于點C成中心對稱;第四次跳躍到點P4 , 使得點P4與點P3關(guān)于點A成中心對稱;第五次跳躍到點P5 , 使得點P5與點P4關(guān)于點B成中心對稱;…照此規(guī)律重復(fù)下去,則點P7的坐標是 , 點P2016的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AB為⊙O的直徑,點C,G都在⊙O上, = ,過點C作AB的垂線,垂足為D,連接BC,AC,BG,BG與AC相交于點E.

(1)求證:BG=2CD;
(2)若⊙O的直徑為5 ,BC=5,求CE的長;
(3)如圖2,在(2)條件下,延長CD,ED,分別與⊙O相交于點M,N,連接MN,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點C,交AD與點E,CG⊥AD于點G.

(1)求證:GC是⊙F的切線;
(2)填空:①若△BCF的面積為15,則△BDA的面積為
②當∠GCD的度數(shù)為時,四邊形EFCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖. 根據(jù)圖中提供的信息,解答下列問題:

(1)補全頻數(shù)分布直方圖;
(2)求扇形統(tǒng)計圖中m的值和“E”組對應(yīng)的圓心角度數(shù);
(3)請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在開展讀書交流活動中全體師生積極捐書.為了解所捐書籍的種類,對部分書籍進行了抽樣調(diào)查,李老師根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下面問題:
(1)本次抽樣調(diào)查的書籍有多少本?請補全條形統(tǒng)計圖;
(2)求出圖1中表示文學類書籍的扇形圓心角度數(shù);
(3)本次活動師生共捐書1200本,請估計有多少本科普類書籍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點E,F(xiàn)分別在線段AD及其延長線上,且DE=DF.給出下列條件:①BE⊥EC;②BF∥CE;③AB=AC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是(只填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,點M在AC邊上,且AM=1,MC=4,動點P在AB邊上,連接PC,PM,則PC+PM的最小值是( )

A.
B.6
C.
D.7

查看答案和解析>>

同步練習冊答案