【題目】如圖,在平面直角坐標系中,已知點的坐標為,且,拋物線圖象經(jīng)過三點.

1)求兩點的坐標;

2)求拋物線的解析式;

3)若點是直線下方的拋物線上的一個動點,作于點,當的值最大時,求此時點的坐標及的最大值.

【答案】1A4,0),C0,﹣4);(2 ;(3PD的最大值為,此時點P2,﹣6).

【解析】

1OAOC4OB4,即可求解;

(2)拋物線的表達式為: ,即可求解;

3,即可求解.

解:(1OAOC4OB4,

故點A、C的坐標分別為(4,0)、(0,﹣4);

2)拋物線的表達式為:,

即﹣4a=﹣4,解得:a1,

故拋物線的表達式為: ;

3)直線CA過點C,設其函數(shù)表達式為:,

將點A坐標代入上式并解得:k1

故直線CA的表達式為:yx4,

過點Py軸的平行線交AC于點H

OAOC4,

,

設點 ,則點Hx,x4),

0,∴PD有最大值,當x2時,其最大值為,

此時點P2,﹣6).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為2,MN分別為邊BC、CD上的動點,且∠MAN45°

1)猜想線段BM、DNMN的數(shù)量關系并證明;

2)若BMCMPMN的中點,求AP的長;

3M、N運動過程中,請直接寫出△AMN面積的最大值   和最小值   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,△ABC中,∠ACB=90°AC=BC=8,點A在半徑為5的⊙O上,點O在直線l上.

(1)如圖①,若⊙O經(jīng)過點C,交BC于點D,求CD的長.

(2)(1)的條件下,若BC邊交l于點E,OE=2,求BE的長.

(3)如圖②,若直線l還經(jīng)過點CBC是⊙O 的切線,F為切點,則CF的長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B90°,AB12mmBC24mm,動點P從點A開始沿邊ABB2mm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BCC4mm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),設運動的時間為ts,四邊形APQC的面積為ymm2

1yt之間的函數(shù)關系式;

2)求自變量t的取值范圍;

3)四邊形APQC的面積能否等于172mm2.若能,求出運動的時間;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y1k1x的圖象與反比例函數(shù)y2x0)的圖象相交于點A2),點B是反比例函數(shù)圖象上一點,它的橫坐標是3,連接OBAB,則△AOB的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 深圳某校初三為提高學生長跑成績,把每天的課間操改為環(huán)校跑,現(xiàn)測得初三(1)班全體同學的成績?nèi)鐖D,請你根據(jù)提供的信息,解答下列問題:

1)初三(1)班共有______人;

2)在扇形統(tǒng)計圖中,良好所在扇形圓心角等于______度;

3)請你補充條形統(tǒng)計圖;

4)若該年級共有650名學生,請你估計該年級喜歡不及格的學生人數(shù)約是______人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關系如圖所示:

1)求yx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數(shù)關系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?

3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣30),下列說法:abc0;②2ab0;③4a+2b+c0若(﹣5,y1),(3y2)是拋物線上兩點,則y1y2,其中說法正確的是( 。

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是等邊三角形,點D是△ABC(包含邊界)平面內(nèi)一點,連接CD,將線段CDC逆時針旋轉(zhuǎn)60°得到線段CE,連接BE,DE,AD,并延長ADBE于點P

1)觀察填空:當點D在圖1所示的位置時,填空:

①與△ACD全等的三角形是______

②∠APB的度數(shù)為______

2)猜想證明:在圖1中,猜想線段PDPE,PC之間有什么數(shù)量關系?并證明你的猜想.

3)拓展應用:如圖2,當△ABC邊長為4,AD=2時,請直接寫出線段CE的最大值.

查看答案和解析>>

同步練習冊答案