【題目】在平面直角坐標系中,對于任意兩點,,若點滿足,,則稱點為點,的衍生點.
(1)求點,的衍生點;
(2)如圖,已知是直線上的一點,,點是,的衍生點.
①求與的函數(shù)關系式;
②若直線與軸交于點,是否存在以為直角邊的,若存在,求出所有滿足條件的點坐標;若不存在,說明理由.
【答案】(1)點,的衍生點是;(2)①;②存在以為直角邊的,此時滿足條件的點坐標是或.
【解析】
(1)根據(jù)衍生點的定義即可求出答案;
(2)①先根據(jù)直線設點B的坐標,再根據(jù)衍生點的定義求出點P的坐標,然后化簡即可得出y與x的函數(shù)關系式;
②如圖(見解析),分PQ是另一直角邊和PA是另一直角邊兩種情況討論,設點B或點P的坐標,再根據(jù)衍生點的定義建立等式求解即可.
(1)由衍生點的定義得:
故點,的衍生點是;
(2)①由題意設:
∵點是點的衍生點
∴,
則
∴
故y與x的函數(shù)關系式為;
②存在,求解點B的坐標過程如下:
如圖1,當PQ是另一直角邊時
此時,
由①的結論,設,則點
由點是點的衍生點得:,
解得:
則
故此時點的坐標為
如圖2,當PA是另一直角邊時
此時,
因為點A的坐標為
所以點P的橫坐標為4,代入得:
則點P的坐標為
設點B的坐標為
由點是點,的衍生點得:,
解得:
則
故此時點的坐標為
綜上,存在以為直角邊的,此時滿足條件的點坐標為或.
科目:初中數(shù)學 來源: 題型:
【題目】等腰的三邊分別為、、,其中,若關于的方程有兩個相等的實數(shù)根,則的周長是( )
A. 9 B. 12 C. 9或12 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點,將△ADE繞點E順時針旋轉180°,點D的對應點為C,點A的對應點為F,過點E作ME⊥AF交BC于點M,連接AM、BD交于點N,現(xiàn)有下列結論:
①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線()與直線平行,且與直線交于點.
(1)求直線的函數(shù)表達式;
(2)、分別是直線、上兩點,點的橫坐標為,且軸,若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年汶川車厘子喜獲豐收,車厘子一上市,水果店的王老板用2500元購進一批車厘子,很快售完;老板又用4400元購進第二批車厘子,所購數(shù)量是第一批的2倍,由于進貨量增加,進價比第一批每干克少了3元.”
(l)第一批車厘子每千克進價多少元?.
(2)該老板在銷售第二批車厘子時,售價在第二批進價的基礎上增加了,售出后,為了盡快售完,決定將剩余車厘子在第二批進價的基礎上每千克降價元進行促銷,結果第二批車厘子的銷售利潤為1520元,求的值。(利潤=售價一進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,D、E分別是AC、BC上的點,且AD=CE,AE與BD相交于點P,BF⊥AE于點F.若PF=4,PD=1,則AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,等腰和等腰中,,,,三點在同一直線上,求證:;
(2)如圖2,等腰中,,,是三角形外一點,且,求證:;
(3)如圖3,等邊中,是形外一點,且,
①的度數(shù)為 ;
②,,之間的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華同學對圖形旋轉前后的線段之間、角之間的關系進行了拓展探究.
(一)猜測探究
在△ABC中,AB=AC,M是平面內(nèi)任意一點,將線段AM繞點A按順時針方向旋轉與∠BAC相等的角度,得到線段AN,連接NB.
(1)如圖1,若M是線段BC上的任意一點,請直接寫出∠NAB與∠MAC的數(shù)量關系是_______,NB與MC的數(shù)量關系是_______;
(2)如圖2,點E是AB延長線上點,若M是∠CBE內(nèi)部射線BD上任意一點,連接MC,(1)中結論是否仍然成立?若成立,請給予證明,若不成立,請說明理由。
(二)拓展應用
如圖3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意點,連接A1P,將A1P繞點A1按順時針方向旅轉60°,得到線段A1Q,連接B1Q.求線段B1Q長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com