【題目】等腰的三邊分別為、、,其中,若關(guān)于的方程有兩個(gè)相等的實(shí)數(shù)根,則的周長(zhǎng)是( )
A. 9 B. 12 C. 9或12 D. 不能確定
【答案】B
【解析】
若一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則根的判別式△=0,據(jù)此可求出b的值;進(jìn)而可由三角形三邊關(guān)系定理確定等腰三角形的三邊長(zhǎng),即可求得其周長(zhǎng).
解:∵關(guān)于x的方程x2+(b+2)x+6-b=0有兩個(gè)相等的實(shí)數(shù)根,
∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
解得b=2,b=-10(舍去);
①當(dāng)a為底,b為腰時(shí),則2+2<5,構(gòu)不成三角形,此種情況不成立;
②當(dāng)b為底,a為腰時(shí),則5-2<5<5+2,能夠構(gòu)成三角形;
此時(shí)△ABC的周長(zhǎng)為:5+5+2=12.
故選B.
此題考查了根與系數(shù)的關(guān)系、等腰三角形的性質(zhì)及三角形三邊關(guān)系定理;在求三角形的周長(zhǎng)時(shí),不能盲目的將三邊相加,而應(yīng)在三角形三邊關(guān)系定理為前提條件下分類討論,以免造成多解、錯(cuò)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A在y軸的正半軸上,點(diǎn)C在x軸的正半軸上,反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支與AB交于點(diǎn)D,與BC交于點(diǎn)E,DF⊥x軸于點(diǎn)F,EG⊥y軸于點(diǎn)G,交DF于點(diǎn)H.若矩形OGHF和矩形HDBE的面積分別是2和5,則k的值是( 。
A. 7 B. C. 2+ D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠C是最小的一個(gè)內(nèi)角,過頂點(diǎn)B的一條直線交AC于點(diǎn)D,直線BD將原三角形分割成兩個(gè)等腰三角形△ABD和△BCD,△ABD中BD=AD,請(qǐng)?zhí)骄俊?/span>A與∠C的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣4,4),C(﹣1,﹣1).
(1)在圖1中畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1;
(2)直接寫出△A1B1C1的面積;
(3)在圖2中y軸上找出點(diǎn)P,使PB+PC的值最。ūA糇鲌D痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個(gè)不相等的實(shí)數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個(gè)相同的根,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),,與軸交于點(diǎn),直線經(jīng)過,兩點(diǎn).
求拋物線的解析式;
在上方的拋物線上有一動(dòng)點(diǎn).
①如圖,當(dāng)點(diǎn)運(yùn)動(dòng)到某位置時(shí),以,為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)的坐標(biāo);
②如圖,過點(diǎn),的直線交于點(diǎn),若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn),,若點(diǎn)滿足,,則稱點(diǎn)為點(diǎn),的衍生點(diǎn).
(1)求點(diǎn),的衍生點(diǎn);
(2)如圖,已知是直線上的一點(diǎn),,點(diǎn)是,的衍生點(diǎn).
①求與的函數(shù)關(guān)系式;
②若直線與軸交于點(diǎn),是否存在以為直角邊的,若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com