【題目】下列說(shuō)法:①如果兩個(gè)三角形全等,那么這兩個(gè)三角形一定成軸對(duì)稱(chēng);②數(shù)軸上的點(diǎn)和實(shí)數(shù)一一對(duì)應(yīng);③若,則;④兩個(gè)無(wú)理數(shù)的和一定為無(wú)理數(shù);⑤精確到十分位;⑥如果一個(gè)數(shù)的算術(shù)平方根等于它本身,那么這個(gè)數(shù)是0.其中正確的說(shuō)法有______.(填序號(hào))
【答案】②
【解析】
根據(jù)軸對(duì)稱(chēng)判斷①;根據(jù)實(shí)數(shù)與數(shù)軸的關(guān)系判斷②;根據(jù)平方根判斷③;根據(jù)無(wú)理數(shù)判斷④;根據(jù)精確度判斷⑤;根據(jù)平方根判斷⑥
解:①如果兩個(gè)三角形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么這兩個(gè)三角形一定全等,所以錯(cuò)誤;
②數(shù)軸上的點(diǎn)和實(shí)數(shù)一一對(duì)應(yīng),本項(xiàng)說(shuō)法正確;
③若,則也成立,所以錯(cuò)誤;
④兩個(gè)無(wú)理數(shù)的和不一定為無(wú)理數(shù),比如:,所以錯(cuò)誤;
⑤,所以精確到十分位不正確;
⑥算術(shù)平方根等于本身的是0,1,所以錯(cuò)誤;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在小明、小紅兩名同學(xué)中選拔一人參加2018年張家界市“經(jīng)典詩(shī)詞朗誦”大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下:
小明:80,85,82,85,83 小紅:88,79,90,81,72.
回答下列問(wèn)題:
(1)求小明和小紅測(cè)試的平均成績(jī);
(2)求小明和小紅五次測(cè)試成績(jī)的方差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】"引葭赴岸“是《九章算木》中的- -道題:”今有池一丈 ,葭生其中央,出水一尺,引葭赴岸,迺與岸芥.伺水深,葭氏各幾何?"題意是:有一個(gè)邊長(zhǎng)為10尺的正方形池塘,一棵蘆葦AB生長(zhǎng)在它的中央,高出水面BC為1尺.如果把該蘆苓沿與水池邊垂直的方向拉向岸辺,那么蘆革的頂部B恰好碰到岸邊的B'. 向蘆葦長(zhǎng)多少? (畫(huà)出幾何圖形并解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD的AD邊延長(zhǎng)至點(diǎn)E,使DE=AD,連接CE,F是BC邊的中點(diǎn),連接FD.
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=3,AD=4,∠A=60°,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)、、都是常數(shù),且叫做“奇特函數(shù)”,當(dāng)時(shí),奇特函數(shù)就成為反比例函數(shù)是常數(shù),且.
若矩形的兩邊長(zhǎng)分別是、,當(dāng)兩邊長(zhǎng)分別增加、后得到的新矩形的面積是,求與的函數(shù)關(guān)系式,并判斷這個(gè)函數(shù)是否“奇特函數(shù)”;
如圖在直角坐標(biāo)系中,點(diǎn)為原點(diǎn)矩形的頂點(diǎn),、坐標(biāo)分別為、,點(diǎn)是中點(diǎn),連接、交于,“奇特函數(shù)”的圖象經(jīng)過(guò)點(diǎn)、,求這個(gè)函數(shù)的解析式,并判斷、、三點(diǎn)是否在這個(gè)函數(shù)圖象上;
對(duì)于中的“奇特函數(shù)”的圖象,能否經(jīng)過(guò)適當(dāng)?shù)淖儞Q后與一個(gè)反比例函數(shù)圖象重合,若能,請(qǐng)直接寫(xiě)出具體的變換過(guò)程和這個(gè)反比例函數(shù)解析式;若不能,請(qǐng)簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解題
(1)閱讀理解:如圖①,等邊內(nèi)有一點(diǎn),若點(diǎn)到頂點(diǎn),,的距離分別為3,4,5,求的大小.
思路點(diǎn)撥:考慮到,,不在一個(gè)三角形中,采用轉(zhuǎn)化與化歸的數(shù)學(xué)思想,可以將繞頂點(diǎn)逆時(shí)針旋轉(zhuǎn)到處,此時(shí),這樣,就可以利用全等三角形知識(shí),結(jié)合已知條件,將三條線(xiàn)段的長(zhǎng)度轉(zhuǎn)化到一個(gè)三角形中,從而求出的度數(shù).請(qǐng)你寫(xiě)出完整的解題過(guò)程.
(2)變式拓展:請(qǐng)你利用第(1)題的解答思想方法,解答下面問(wèn)題:
已知如圖②,中,,,、為上的點(diǎn)且,,,求的大小.
(3)能力提升:如圖③,在中,,,,點(diǎn)為內(nèi)一點(diǎn),連接,,,且,請(qǐng)直接寫(xiě)出的值,即______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)長(zhǎng)為24米的籬笆,一面利用墻(墻的最大長(zhǎng)度a為15米)圍成的中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要使圍成花圃面積最大,求AB的長(zhǎng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,厘米,厘米,點(diǎn)為的中點(diǎn).
(1)如果點(diǎn)P在線(xiàn)段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,與是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等, 與是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動(dòng)速度和時(shí)間;若不能,請(qǐng)說(shuō)明理由.
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E.F分別在邊AD、CD上,∠EBF=45°,則△EDF
的周長(zhǎng)等于_______。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com