【題目】已知函數(shù)軸交與,兩點(diǎn),與軸交與點(diǎn),則能使是直角三角形的拋物線條數(shù)是(

A. 0 B. 1 C. 2 D. 3

【答案】B

【解析】

首先求出拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo)然后利用勾股定理求出ABBC的長(zhǎng),再次根據(jù)△ABC是直角三角形利用勾股定理列出n的一元二次方程,求出n的值即可

y=(xn)(x3)=0,解得x=nx=3

假設(shè)3n,A30),Bn,0),x=0,y=3nC點(diǎn)坐標(biāo)為(0,3n),根據(jù)圖形知CB2=9+9n2,AC2=n2+9n2,AB2=(3n2根據(jù)題意知△ABC是直角三角形,BC2+AC2=AB2整理得9+9n2+n2+9n2=96n+n2,18n2+6n=0,解得n=0n=﹣

當(dāng)n=0時(shí),這樣的拋物線不滿足題意n=﹣,所以能使△ABC是直角三角形的拋物線條數(shù)是1

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;并寫(xiě)出B點(diǎn)坐標(biāo);

(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A'B'C';

(3)請(qǐng)作出將△ABC向下平移的3個(gè)單位,再向右平移5個(gè)單位后的△A1B1C1;則點(diǎn)A1的坐標(biāo)為_____;點(diǎn)B1的坐標(biāo)為______,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,剪兩張對(duì)邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是(  )

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小迪同學(xué)在學(xué)勾股定理時(shí)發(fā)現(xiàn)一類特殊三角形:在一個(gè)三角形中,如果一個(gè)角是另一個(gè)角的2倍,那么稱這個(gè)三角形為倍角三角形”.

如圖1,在倍角中,,、、的對(duì)邊分別記為,,三角形的三邊,有什么關(guān)系呢?讓我們一起來(lái)探索……

1)已知倍角三角形的一個(gè)內(nèi)角為,則這個(gè)三角形的另兩個(gè)角的度數(shù)分別為______

2)小迪同學(xué)先從特殊的倍角三角形入手研究,請(qǐng)你結(jié)合圖2和圖3填寫(xiě)下表:

三角形

角的已知量

2

______

______

3

______

小迪同學(xué)根據(jù)上表,提出一般性猜想:在倍角三角形中,,那么,,三邊滿足:______;

3)如圖1:在倍角三角形中,,、、的對(duì)邊分別記為,,,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,已知,相交于點(diǎn)相交于點(diǎn),相交于點(diǎn).

1)如圖,觀察并猜想有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.

2)箏形的定義:兩組鄰邊分別相等的四邊形叫做箏形. 如上圖,證明四邊形是箏形.

3)如圖,若,其他條件不變,求的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,BAC=),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD。

1)如圖1,直接寫(xiě)出ABD的大。ㄓ煤的式子表示);

2)如圖2BCE=150°,ABE=60°,判斷ABE的形狀并加以證明;

3)在(2)的條件下,連結(jié)DE,若DEC=45°,求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線上.

,,求的值;

若此拋物線經(jīng)過(guò)點(diǎn),且二次函數(shù)的最小值是,請(qǐng)畫(huà)出點(diǎn)的縱坐標(biāo)隨橫坐標(biāo)變化的圖象,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等邊三角形,點(diǎn)、分別在上,且,相交于點(diǎn),連接,則下列結(jié)論:①;②;③;④,正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)的中點(diǎn),且交于點(diǎn),求證:的中位線.

查看答案和解析>>

同步練習(xí)冊(cè)答案