【題目】近年來,中學(xué)生的身體素質(zhì)普遍下降,某校為了提高本校學(xué)生的身體素質(zhì),落實教育部門“在校學(xué)生每天體育鍛煉時間不少于1小時”的文件精神,對部分學(xué)生的每天體育鍛煉時間進(jìn)行了調(diào)查統(tǒng)計.以下是本次調(diào)查結(jié)果的統(tǒng)計表和統(tǒng)計圖.
組別 | A | B | C | D | E |
時間t(分鐘) | t<40 | 40≤t<60 | 60≤t<80 | 80≤t<100 | t≥100 |
人數(shù) | 12 | 30 | a | 24 | 12 |
(1)求出本次被調(diào)查的學(xué)生數(shù);
(2)請求出統(tǒng)計表中a的值;
(3)求各組人數(shù)的眾數(shù);
(4)根據(jù)調(diào)查結(jié)果,請你估計該校2400名學(xué)生中每天體育鍛煉時間不少于1小時的學(xué)生人數(shù).
【答案】(1)120(人)。
(2)a=42。
(3)眾數(shù)是12人。
(4)1560(人)。
【解析】
試題(1)根據(jù)A組有12人,占被調(diào)查總數(shù)的10%,據(jù)此即可求得總?cè)藬?shù)。
(2)總?cè)藬?shù)減去其它各組的人數(shù)即可求得。
(3)根據(jù)眾數(shù)的定義即可求解。
(4)利用2400乘以對應(yīng)的比例即可求解。
解:(1)次被調(diào)查的學(xué)生數(shù)為12÷10%=120(人)。
(2)a=120﹣12﹣30﹣24﹣12=42。
(3)眾數(shù)是12人。
(4)每天體育鍛煉時間不少于1小時的學(xué)生人數(shù)是:2400×=1560(人)。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結(jié)果用根號表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△AOD是等腰三角形,點A(12,0),O為坐標(biāo)原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1,和過P、A兩點的二次函數(shù)y2,的開口均向下,它們的頂點分別為B,C,點B,C分別在OD、AD上.當(dāng)OD=AD=10時,則兩個二次函數(shù)的最大值之和等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某校為了解九年級男同學(xué)的體育考試準(zhǔn)備情況,隨機(jī)抽取部分男同學(xué)進(jìn)行了1000米跑測試.按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學(xué)校繪制了如下不完整的統(tǒng)計圖.
(1)根據(jù)給出的信息,補(bǔ)全兩幅統(tǒng)計圖;
(2)該校九年級有600名男生,請估計成績未達(dá)到良好有多少名?
(3)某班甲、乙兩位成績優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動會1000米比賽,預(yù)賽分為A、B、C三組進(jìn)行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )
A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售櫻桃,已知櫻桃的進(jìn)價為15元/千克,如果售價為20元/千克,那么每天可售出250千克,如果售價為25元/千克,那么每天可售出200千克,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價x(元/千克)之間 存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若該超市每天要獲得利潤810元,同時又要讓消費者得到實惠,則售價x應(yīng)定于多少元?
(3)若櫻桃的售價不得高于28元/千克,請問售價定為多少時,該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知B點的坐標(biāo)為B(8,0).
(1)求拋物線的解析式及其對稱軸方程;
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由;
(3)M為拋物線上BC之間的一點,N為線段BC上的一點,若MN∥y軸,求MN的最大值;
(4)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 的頂點 、、 都在坐標(biāo)軸上,點 的坐標(biāo)為 , 是 邊的中點.
(1)求出點 的坐標(biāo)和 的周長;(直接寫出結(jié)果)
(2)若點 是矩形 的對稱軸 上的一點,使以 、、、為頂點的四邊形是平行四邊形,求出符合條件的點 的坐標(biāo);
(3)若 是 邊上一個動點,它以每秒 個單位長度的速度從 點出發(fā),沿 方向向點 勻速運(yùn)動,設(shè)運(yùn)動時間為 秒.是否存在某一時刻,使以 、、 為頂點的三角形與 相似或全等? 若存在,求出此時 的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com