【題目】如圖,AB是⊙O的直徑,D,E為⊙O上位于AB異側(cè)的兩點,連結(jié)BD并延長至點C,使得CD=BD,連結(jié)AC交⊙O于點F,連接BE,DE,DF.
(1)若∠E=35°,求∠BDF的度數(shù).
(2)若DF=4,cos∠CFD=,E是的中點,求DE的長.
【答案】(1)∠BDF=110°;(2)DE=2+.
【解析】
(1)連接EF,BF,由AB是⊙O的直徑,得到∠AFB=∠BFC=90°,推出,得到∠DEF=∠BED=35°,根據(jù)圓內(nèi)接四邊形的性質(zhì)即可得到結(jié)論;
(2)連接AD,OE,過B作BG⊥DE于G,解直角三角形得到AB=6,由E是的中點,AB是⊙O的直徑,得到∠AOE=90°,根據(jù)勾股定理即可得到結(jié)論.
(1)如圖1,連接EF,BF,
∵AB是⊙O的直徑,
∴∠AFB=∠BFC=90°,
∵CD=BD,
∴DF=BD=CD,
∴,
∴∠DEF=∠BED=35°,
∴∠BEF=70°,
∴∠BDF=180°﹣∠BEF=110°;
(2)如圖2,連接AD,OE,過B作BG⊥DE于G,
∵∠CFD=∠ABD,
∴cos∠ABD=cos∠CFD=,
在Rt△ABD中,BD=DF=4,
∴AB=6,
∵E是的中點,AB是⊙O的直徑,
∴∠AOE=90°,
∵BO=OE=3,
∴BE=3,
∴∠BDE=∠ADE=45°,
∴DG=BG=BD=2,
∴GE==,
∴DE=DG+GE=2+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)(k是常數(shù),且)的圖象經(jīng)過點.
(1)若b=4,求y關(guān)于x的函數(shù)表達式;
(2)點也在反比例函數(shù)y的圖象上:
①當(dāng)且時,求b的取值范圍;
②若B在第二象限,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,體育分?jǐn)?shù)在中招考試中占分比重越來越大,不少家長、考生也越來越重視;某中學(xué)計劃購買一批足球、跳繩供學(xué)生們考前日常練習(xí)使用,負(fù)責(zé)此次采購的老師從商場了解到:購買7個足球和4條跳繩共需510元;購買3個足球比購買5條跳繩少50元.
(1)求足球和跳繩的單價;
(2)按學(xué)校規(guī)劃,準(zhǔn)備購買足球和跳繩共200件,且足球的數(shù)量不少于跳繩的數(shù)量的 ,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中每個小正方形的邊長均為1,線段AB、線段EF的端點均在小正方形的頂點上.
(1)在圖中以AB為邊畫Rt△BAC,點C在小正方形的頂點上,使∠BAC=90°,tan∠ACB=;
(2)在(1)的條件下,在圖中畫以EF為邊且面積為3的△DEF,點D在小正方形的頂點上,連接CD、BD,使△BDC是銳角等腰三角形,直接寫出∠DBC的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B的坐標(biāo)為( ,5),△ACD與△ACO關(guān)于直線AC對稱(點D和O對應(yīng)),反比例函數(shù)y= (k≠0)的圖象與AB,BC分別交于E,F兩點,連結(jié)DE,若DE∥x軸,則點F的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們對垃圾分類知識的了解程度,增強同學(xué)們的環(huán)保意識某校數(shù)學(xué)興趣小組設(shè)計了“垃圾分類知識及投放情況”問卷,并在本校隨機抽取若干名同學(xué)進行了問卷測試,根據(jù)測試成績分布情況,將測試成績分成A、B、C、D四組,繪制了如下統(tǒng)計圖表
問卷測試成績分組表
組別 | 分?jǐn)?shù)/分 |
A | 60<x≤70 |
B | 70<x≤80 |
C | 80<x≤90 |
D | 90<x≤100 |
(1)本次抽樣調(diào)查的樣本總量是 ;
(2)樣本中,測試成績在B組的頻數(shù)是 ,D組的頻率是 ;
(3)樣本中,這次測試成績的中位數(shù)落在 組;
(4)如果該校共有880名學(xué)生,請估計成績在90<x≤100的學(xué)生約有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點B逆時針旋轉(zhuǎn)90°得到△DBE,DE的延長線恰好經(jīng)過AC的中點F,連接AD,CE.
(1)求證:AE=CE;
(2)若BC=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于點A,C(點A在點C的右側(cè)),與y軸交于點B
(1)求點A,B的坐標(biāo)及直線AB的函數(shù)表達式;
(2)若直線l⊥x軸,且直線l在第一象限內(nèi)與拋物線交于點M,與直線AB交于點N,求點M與點N之間的距離的最大值,并求出此時點M,N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機去年每臺的售價y(元)與月份x之間滿足函數(shù)關(guān)系:y=﹣50x+2600,去年的月銷量p(萬臺)與月份x之間成一次函數(shù)關(guān)系,其中1﹣6月份的銷售情況如下表:
月份(x) | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 |
銷售量(p) | 3.9萬臺 | 4.0萬臺 | 4.1萬臺 | 4.2萬臺 | 4.3萬臺 | 4.4萬臺 |
(1)求p關(guān)于x的函數(shù)關(guān)系式;
(2)求該品牌手機在去年哪個月的銷售金額最大?最大是多少萬元?
(3)今年1月份該品牌手機的售價比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經(jīng)銷商決定對該手機以1月份價格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺.若今年2月份這種品牌手機的銷售額為6400萬元,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com