【題目】如圖,△ABC中,以BC為直徑的⊙O交AB于點(diǎn)D,AE平分∠BAC交BC于點(diǎn)E,交CD于點(diǎn)F.且CE=CF.
(1)求證:直線CA是⊙O的切線;
(2)若BD=DC,求的值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】試題分析:(1)若要證明直線CA是⊙O的切線,則只要證明∠ACB=90°即可;
(2)易證△ADF∽△ACE,由相似三角形的性質(zhì)以及結(jié)合已知條件即可求出的值.
試題解析:解:(1)證明:∵BC為直徑,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°
∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直線CA是⊙O的切線;
(2)由(1)可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴ ,∵BD=DC,∴tan∠ABC= =,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=,∴sin∠ACD=,∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).
【答案】32°
【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線的定義求出∠ABE,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進(jìn)行計(jì)算即可得解.
試題解析:由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,
又∠A=40°,∠ACB=104°,
∴∠ABC=180°-40°-104°=36°,
又∵BE平分∠ABC,
∴∠ABE=∠ABC=18°
∴∠BED=∠A+∠ABE=40°+18°=58°,
又∵∠BED+∠DBE=90°,
∴∠DBE=90°-∠BED=90°-58°=32°.
【題型】解答題
【結(jié)束】
25
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過(guò)的某書店,買到書后繼續(xù)去學(xué)校以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.
根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)小明家到學(xué)校的路程是________米
(2)小明在書店停留了___________分鐘.
(3)本次上學(xué)途中,小明一共行駛了________ 米,一共用了______ 分鐘.
(4)在整個(gè)上學(xué)的途中_________(哪個(gè)時(shí)間段)小明騎車速度最快,最快的速度是___________米/分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別為E,F,AE,CF分別與BD交于點(diǎn)G和H,且AB=.
(1)若tan∠ABE =2,求CF的長(zhǎng);
(2)求證:BG=DH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,,直線MN分別與x軸、y軸交于點(diǎn)M(6,0),N(0, ),等邊△ABC的頂點(diǎn)B與原點(diǎn)O重合,BC邊落在x軸正半軸上,點(diǎn)A恰好落在線段MN上,將等邊△ABC從圖l的位置沿x軸正方向以每秒l個(gè)單位長(zhǎng)度的速度平移,邊AB,AC分別與線段MN交于點(diǎn)E,F(如圖2所示),設(shè)△ABC平移的時(shí)間為t(s).
(1)等邊△ABC的邊長(zhǎng)為_______;
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)t=_______時(shí),MN垂直平分AB;
(3)若在△ABC開(kāi)始平移的同時(shí).點(diǎn)P從△ABC的頂點(diǎn)B出發(fā).以每秒2個(gè)單位長(zhǎng)度的速度沿折線BA—AC運(yùn)動(dòng).當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí)即停止運(yùn)動(dòng).△ABC也隨之停止平移.
①當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),若△PEF與△MNO相似.求t的值;
②當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí),設(shè),求S與t的函數(shù)關(guān)系式,并求出S的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果 (a 1) x a 1 的解集是 x 1 ,那么 a 的取值范圍是( )
A.a 0B.a 1C.a 1D.a 是任意有理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程mx-3x+m-4=0(m為常數(shù)).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè),是方程的兩個(gè)實(shí)數(shù)根,且+=6.請(qǐng)求出方程的這兩個(gè)實(shí)數(shù)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com