【題目】如圖,線段AB8,射線BGAB,P為射線BG上一點(diǎn),連接AP,APCPAP=CP,連接AC,PD平分∠APC,CD與點(diǎn)BAP兩側(cè),在線段DP取一點(diǎn)E,使∠EAP=∠BAP,連接CE與線段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).

(1)求證:AEP≌△CEP;

(2)判斷CFAB的位置關(guān)系,并說明理由;

(3)求△AEF的周長.

【答案】1)證明見解析;(2CFAB,理由見解析;(316.

【解析】

由PD平分∠APC,AP=CP,可得∠APD=∠CPD,從而證得△AEP≌△CEP;由△AEP≌△CEP,可得∠EAP=∠ECP,根據(jù)等量代換可得∠AMF+∠PAB=90°,從而得出位置關(guān)系;過點(diǎn) C 作CN⊥PB.可證得△PCN≌△APB

解: (1)∵DP平分∠APC, PC=PA,

∴∠APD=∠CPD=45°,

又因?yàn)镻E=PE,

∴△AEP≌△CEP(SAS);

(2)CF⊥AB.

理由如下:∵△AEP≌△CEP,

∴∠EAP=∠ECP,

∵∠EAP=∠BAP.

∴∠BAP=∠FCP,

∵∠FCP+∠CMP=90°,∠AMF=∠CMP,

∴∠AMF+∠PAB=90°,

∴∠AFM=90°,

∴CF⊥AB;

(3)過點(diǎn) C 作CN⊥PB.可證得△PCN≌△APB,

∴CN=PB=BF,PN=AB,

∵△AEP≌△CEP,

∴AE=CE,

∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2 AB=16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省某地區(qū)為了了解2016年初中畢業(yè)生畢業(yè)去向,對(duì)部分九年級(jí)學(xué)生進(jìn)行了抽樣調(diào)查,就九年級(jí)學(xué)生畢業(yè)后的四種去向:A.讀普通高中;B.讀職業(yè)高中;C.直接進(jìn)入社會(huì)就業(yè);D.其他(如出國等)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖1,如圖2)

(1)填空:該地區(qū)共調(diào)查了 名九年級(jí)學(xué)生;

(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;

(3)若該地區(qū)2016年初中畢業(yè)生共有3500人,請(qǐng)估計(jì)該地區(qū)今年初中畢業(yè)生中讀普通高中的學(xué)生人數(shù);

(4)老師想從甲,乙,丙,丁4位同學(xué)中隨機(jī)選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請(qǐng)用畫樹狀圖或列表的方法求選中甲同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)分別在射線上移動(dòng),的平分線與的外角平分線交于點(diǎn).

1)當(dāng)時(shí), .

2)請(qǐng)你猜想:隨著兩點(diǎn)的移動(dòng),的度數(shù)大小是否變化?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠BAC=90°,ADBCD,ACB的平分線交ADE,交ABF,FGBCG,請(qǐng)猜測(cè)AEFG之間有怎樣的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三年200名學(xué)生參加某次測(cè)評(píng),從中隨機(jī)抽取了20名學(xué)生,記錄他們的分?jǐn)?shù),整理得到如下頻數(shù)分布直方圖:

從總體的200名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率是______;

樣本中分?jǐn)?shù)的中位數(shù)在______組;

已知樣本中有的男生分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等試估計(jì)總體中男生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就學(xué)生體育活動(dòng)興趣愛好的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:

1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有   人,在扇形統(tǒng)計(jì)圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有   人喜歡籃球項(xiàng)目.

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖乙,是有公共頂點(diǎn)的等腰直角三角形,,點(diǎn)P為射線BD,CE的交點(diǎn).

如圖甲,將繞點(diǎn)A旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是______.

,,把繞點(diǎn)A旋轉(zhuǎn),

當(dāng)時(shí),求PB的長;

求旋轉(zhuǎn)過程中線段PB長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項(xiàng)公益知識(shí)競賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OB平分CBA,CO平分ACB,且MNBC,設(shè)AB=12,BC=24,AC=18,則AMN的周長為( )

A.30 B.33 C.36 D.39

查看答案和解析>>

同步練習(xí)冊(cè)答案