①2
3
-(
27
+
1
2
12
)   
2
3
x2y
÷
3
2
xy
1
6
xy2
(x>0,y>0)
考點(diǎn):二次根式的混合運(yùn)算
專題:計(jì)算題
分析:①原式去括號(hào)合并即可得到結(jié)果;
②原式從左到右依次計(jì)算即可得到結(jié)果.
解答:解:①原式=2
3
-3
3
-
3

=-2
3


②原式=
2x
3
y
÷
3
2
xy
y
6
x

=
2
27
xy.
點(diǎn)評(píng):此題考查了二次根式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-
1
2
x2+
3
2
x+2的圖象與x軸交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C.過(guò)動(dòng)點(diǎn)H(0,m)作平行于x軸的直線l,直線l與二次函數(shù)y=-
1
2
x2+
3
2
x+2的圖象相交于點(diǎn)D,E.
(1)寫出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)若m>0,以DE為直徑作⊙Q,當(dāng)⊙Q與x軸相切時(shí),求m的值;
(3)直線l上是否存在一點(diǎn)F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解方程組
y=x+1
x2+y2=1

(2)已知:如圖所示,圓O的圓心為原點(diǎn),半徑為1,請(qǐng)?jiān)趫D中畫出一次函數(shù)
y=x+1的圖象,并寫出它與圓O的交點(diǎn)坐標(biāo)(無(wú)需過(guò)程);
(3)你能發(fā)現(xiàn)(1)中方程組的解與(2)中交點(diǎn)坐標(biāo)之間的關(guān)系嗎?請(qǐng)寫出你的發(fā)現(xiàn),不用說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

直角坐標(biāo)系xOy中,有反比例函數(shù)y=
8
3
x
(x>0)
上的一動(dòng)點(diǎn)P,以點(diǎn)P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切時(shí),求OP2的值.
(2)設(shè)圓P運(yùn)動(dòng)時(shí)與x軸相交,交點(diǎn)為B、C,如圖2,當(dāng)四邊形ABCP是菱形時(shí),
①求出A、B、C三點(diǎn)的坐標(biāo).
②設(shè)一拋物線過(guò)A、B、C三點(diǎn),在該拋物線上是否存在點(diǎn)Q,使△QBP的面積是菱形ABCP面積的
1
2
?若存在,求出所有滿足條件的Q點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解方程組:
2x-3y=-5
3x+2y=12
;
(2)解方程:(x-3)2+4x(x-3)=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(π-2)0+(-
1
2
)-2+|3-
12
|-2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:四邊形ABFC為平行四邊形;
(2)請(qǐng)你探索EC和AD的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算化簡(jiǎn)
(1)
1
2
-
6
3
-2
2

(2)
18
-
2
2
+|1-
2
|+(
1
2
-1
(3)
48
÷
3
-
1
2
×
12
+
24

(4)
25
-
1
18
+
1
2
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:6
1
2
-
72
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案