精英家教網 > 初中數學 > 題目詳情
豎直向上發(fā)射物體的高度h(m)滿足關系式h=-5t2+v0•t,其中t(s)是物體運動的時間,v0(m/s)是物體被發(fā)射時的速度.某公園計劃設計園內噴泉,噴水的最大高度要求達到15m,那么噴水的速度應該達到多少?(結果精確到0.01m/s)
h=-5t2+v0•t,其對稱軸為t=-
v0
2•(-5)
=
v0
10

當t=
v0
10
時,h最大=-5•(
v0
10
2+v0
v0
10
=
v02
20
=15,
整理得:v02=300,
∴v0=10
3
≈17.32(m/s),或v0=-10
3
(舍去)
答:噴水的速度應該達到17.32m/s.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖一次函數圖象與x軸y軸交于A(6,0)B(0,2
3
)線段AB的垂直平分線交x軸于點C交y軸于點D
求:(1)求這個一次函數的解析式;
(2)過A,B,C三點的拋物線解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3).設拋物線的頂點為D,求解下列問題:
(1)求拋物線的解析式和D點的坐標;
(2)過點D作DFy軸,交直線BC于點F,求線段DF的長,并求△BCD的面積;
(3)能否在拋物線上找到一點Q,使△BDQ為直角三角形?若能找到,試寫出Q點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖所示,是一條高速公路的隧道口在平面直角坐標系上的示意圖,點A和A1、點B和B1分別關于y軸對稱,隧道拱部分BCB1為一條拋物線,最高點C離路面AA1的距離為8米,點B離路面為6米,隧道的寬度AA1為16米;則隧道拱拋物線BCB1的函數解析式______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某市人民廣場上要建造一個圓形的噴水池,并在水池中央垂直安裝一個柱子OP,柱子頂端P處裝上噴頭,由P處向外噴出的水流(在各個方向上)沿形狀相同的拋物線路徑落下(如圖所示).若已知OP=3米,噴出的水流的最高點A距水平面的高度是4米,離柱子OP的距離為1米.
(1)求這條拋物線的解析式;
(2)若不計其它因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知直線y=2x+2交y軸于點A,交x軸于點B,直線l:y=-3x+9
(1)求經過A、B、C三點的拋物線的函數關系式,并指出此函數的函數值隨x的增大而增大時,x的取值范圍;
(2)若點E在(1)中的拋物線上,且四邊形ABCE是以BC為底的梯形,求梯形ABCE的面積;
(3)在(1)、(2)的條件下,過E作直線EF⊥x軸,垂足為G,交直線l于F.在拋物線上是否存在點H,使直線l、FH和x軸所圍成的三角形的面積恰好是梯形ABCE面積的
1
2
?若存在,求點H的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

蔬菜基地種植的某種蔬菜,根據今年的市場行情,預計從3月1日起的50天內,它的市場售價y1(萬元)與上市時間x的關系可用圖(1)中的一條折線表示;他的種植成本y2(萬元)與上市時間x的關系可用力(2)中的拋物線的一部分來表示.若市場售價減去種植成本為純利潤

(1)求y1、y2關于x的函數關系式;
(2)哪天上市這種綠色蔬菜既不賠本也不賺錢?
(3)哪天上市的蔬菜的利潤最大?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖中是拋物線形拱橋,當水面在n時,拱頂離水面2m,水面寬4m,水面下降1m,水面寬度增加多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

一座隧道的截面由拋物線和長方形構成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內通過,為什么?
(3)如果隧道內設雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

同步練習冊答案