【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點,DECF交于點G

問題發(fā)現(xiàn)

如圖,若四邊形ABCD是矩形,且G,填空:______;當矩形ABCD是正方形時,______;

拓展探究

如圖,若四邊形ABCD是平行四邊形,試探究:當滿足什么關系時,成立?并證明你的結論;

解決問題

如圖,若G,請直接寫出的值.

【答案】1)①,②1;(2)當+=180°時,成立,理由見解析;(3.

【解析】

1)根據(jù)矩形的性質(zhì)先一步證明△AED~DFC,然后進一步利用相似三角形性質(zhì)求解即可;

2)在AD的延長線上取一點M,使得CM=CF,則∠CMD=CFM,通過證明△ADE~DCM進一步求解即可;

3)過C點作CNADN點,CMABAB延長線于M點,連接BD,先證明△BAD≌△BCD,然后進一步證明△BCM~DCN,再結合勾股定理求出CN,最終通過證明△AED~NFC進一步求解即可.

1)∵四邊形ABCD為矩形,

∴∠A=FDC=90°,AB=CD,

CFDE,

∴∠DGF=90°,

∴∠ADE+CFD=90°,

ADE+AED=90°,

∴∠CFD=AED

∵∠A=CDF,

∴△AED~DFC

,

∴①,②若四邊形ABCD為正方形,

故答案為:①,②1;

2)當+=180°時,成立,理由如下:

如圖,在AD的延長線上取一點M,使得CM=CF,則∠CMD=CFM,

∵四邊形ABCD為平行四邊形,

ABCD,ADBC,

∴∠A=CDM,

∵∠B+EGC=180°,

∴∠BEG+FCB=180°,

∵∠BEG+AED=180°,

∴∠AED=FCB,

ADBC

∴∠CFM=FCB,

∴∠CMD=AED,

∴△ADE~DCM,

,

即:;

3,理由如下:

C點作CNADN點,CMABAB延長線于M點,連接BD,設CN=x,

∵∠BAD=90°,即ABAD,

∴∠A=M=CAN=90°,

∴四邊形AMCN為矩形,

AM=CN,AN=CM,

在△BAD與△BCD中,

AD=CD,AB=BC,BD=BD,

∴△BAD≌△BCDSSS),

∴∠BCD=A=90°,

∴∠ABC+ADC=180°,

∵∠ABC+CBM=180°,

∴∠MBC=ADC,

∵∠CND=M=90°,

∴△BCM~DCN,

,

,

,

RtCMB中,,BM=AMAB=,

由勾股定理可得:,

,

解得:(舍去)或,

,

∵∠A=FGD=90°,

∴∠AED+AFG=180°,

∵∠AFG+NFC=180°,

∴∠AED=CFN,

∵∠A=CNF

∴△AED~NFC,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一段時間后,記錄下這種植物高度的增長情況(如下表):

溫度x/

﹣4

﹣2

0

2

4

6

植物每天高度的增長量y/mm

41

49

49

41

25

1

由這些數(shù)據(jù),科學家推測出植物每天高度的增長量y是溫度x的二次函數(shù),那么下列三個結論:

①該植物在0℃時,每天高度的增長量最大;

②該植物在﹣6℃時,每天高度的增長量能保持在25mm左右;

③該植物與大多數(shù)植物不同,6℃以上的環(huán)境下高度幾乎不增長.

上述結論中,所有正確結論的序號是

A. ①②③ B. ①③ C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】⑴如圖1,是正方形上的一點,連接,將繞著點逆時針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線交于點和點.

①線段的數(shù)量關系是 ;

②寫出線段之間的數(shù)量關系.

⑵當四邊形為菱形,,點是菱形所在直線上的一點,連接,將繞著點逆時針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線交于點和點.

①如圖2,點在線段上時,請?zhí)骄烤段之間的數(shù)量關系,寫出結論并給出證明;

②如圖3,點在線段的延長線上時,交射線于點;若 ,直接寫出線段的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是一枚質(zhì)地均勻的正四面體形狀的骰子,每個面上分別標有數(shù)字2,34,5.圖是一個正六邊形棋盤,現(xiàn)通過擲骰子的方式玩跳棋游戲,規(guī)則是:將這枚骰子在桌面擲出后,看骰子落在桌面上(即底面)的數(shù)字是幾,就從圖中的A點開始沿著順時針方向連續(xù)跳動幾個頂點,第二次從第一次的終點處開始,按第一次的方法繼續(xù)……

1)隨機擲一次骰子,則棋子跳動到點C處的概率是   

2)隨機擲兩次骰子,用畫樹狀圖或列表的方法,求棋子最終跳動到點C處的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖是用來制作完整的車票種類和相應數(shù)量的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖回答下列問題:

若去丙地的車票占全部車票的,則總票數(shù)為______ 張,去丁地的車票有______

若公司采用隨機抽取的方式發(fā)車票,小胡先從所有的車票中隨機抽取一張所有車票的形狀、大小、質(zhì)地完全相同、均勻,那么員工小胡抽到去甲地的車票的概率是多少?

若有一張車票,小王和小李都想要,他們決定采取擲一枚質(zhì)地均勻的正方體骰子的方式來確定給誰,其上的數(shù)字是3的倍數(shù),則給小王,否則給小李請問這個規(guī)則對雙方是否公平?若公平請說明理由;若不公平,請通過計算說明對誰更有利.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,點A(1,5)、B(6,5)、C(23)、D(14)

1)畫出△ABC,并判斷出△ABC的形狀;

2)將線段AB繞點P逆時針旋轉(zhuǎn)90°得到線段AE,其中點B的對應點為點A,點A的對應點為點E,寫出P點的坐標;

3)連接BD,交AC于點M,則的比值為   (直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠MAN90°,線段a和線段b

求作:矩形ABCD,使得矩形ABCD的兩條邊長分別等于線段a和線段b

下面是小東設計的尺規(guī)作圖過程.

作法:如圖,

①以點A為圓心,b為半徑作弧,交AN于點B;

②以點A為圓心,a為半徑作弧,交AM于點D;

③分別以點B、點D為圓心,a、b長為半徑作弧,兩弧交于∠MAN內(nèi)部的點C

④分別連接BC,DC

所以四邊形ABCD就是所求作的矩形.

根據(jù)小東設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:

AB  ;AD  ;

∴四邊形ABCD是平行四邊形.

∵∠MAN90°;

∴四邊形ABCD是矩形(  ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C90°,AC4cmBC3cm,若動點P從點C開始,沿CABC的路徑運動一周,且速度為每秒2cm,設運動時間為t秒,當t_____時,點P與△ABC的某兩個頂點構成等腰三角形.

查看答案和解析>>

同步練習冊答案