【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為1cm的⊙P的圓心在直線AB上,且與點(diǎn)O的距離為6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移動(dòng),那么________秒種后⊙P與直線CD相切.
【答案】4或8
【解析】
分類討論:當(dāng)點(diǎn)P在當(dāng)點(diǎn)P在射線OA時(shí)⊙P與CD相切,過P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動(dòng)了(6-2)cm后與CD相切,即可得到⊙P移動(dòng)所用的時(shí)間;當(dāng)點(diǎn)P在射線OB時(shí)⊙P與CD相切,過P作PE⊥CD與F,同前面一樣易得到此時(shí)⊙P移動(dòng)所用的時(shí)間.
解:當(dāng)點(diǎn)P在射線OA時(shí)⊙P與CD相切,如圖,過P作PE⊥CD與E,
∴PE=1cm,
∵∠AOC=30°,
∴OP=2PE=2cm,
∴⊙P的圓心在直線AB上向右移動(dòng)了(6-2)cm后與CD相切,
∴⊙P移動(dòng)所用的時(shí)間==4(秒);
當(dāng)點(diǎn)P在射線OB時(shí)⊙P與CD相切,如圖,過P作PE⊥CD與F,
∴PF=1cm,
∵∠AOC=∠DOB=30°,
∴OP=2PF=2cm,
∴⊙P的圓心在直線AB上向右移動(dòng)了(6+2)cm后與CD相切,
∴⊙P移動(dòng)所用的時(shí)間==8(秒).
故答案為4或8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門票原定的票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對(duì)于個(gè)人購票也采取優(yōu)惠措施,原定票價(jià)經(jīng)過連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房價(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間 每天的房價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房價(jià)不得高于340元.設(shè)每個(gè)房間的房價(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明要測(cè)量河內(nèi)小島B到河邊公路AD的距離,在點(diǎn)A處測(cè)得∠BAD=37°,沿AD方向前進(jìn)150米到達(dá)點(diǎn)C,測(cè)得∠BCD=45°. 求小島B到河邊公路AD的距離.
(參考數(shù)據(jù):sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,高AD、BE相交于點(diǎn)H,BC=4,在BE上截取BG=2,以GE為邊作等邊三角形GEF,則△ABH與△GEF重疊(陰影)部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于點(diǎn)Q.是否存在點(diǎn)P,使得QP=QO;若存在,求出相應(yīng)的∠OCP的大;若不存在,請(qǐng)簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天課間,頑皮的小明同學(xué)拿著老師的等腰三角板玩,不小心掉到兩根柱子之間,如圖所示,這一幕恰巧被數(shù)學(xué)老師看見了,于是有了下面這道題.
(1)求證:△ADC≌△CEB;
(2)如果每塊磚的厚度a=10cm,請(qǐng)你幫小明求出三角板ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com