【題目】若AB是⊙O內(nèi)接正五邊形的一邊,AC是⊙O內(nèi)接正六邊形的一邊,則∠BAC等于( )
A. 120° B. 6° C. 114° D. 114°或6°
【答案】D
【解析】先根據(jù)題意畫出圖形,根據(jù)正多邊形與圓的關(guān)系分別求出中心角∠AOC=60°,∠AOB=72°,再由等邊對等角及三角形內(nèi)角和定理分別求出∠OAC=54°,∠OAB=54°,然后分兩種情況進(jìn)行討論:①AB、AC都在OA同側(cè);②AB、AC在OA兩側(cè).
如圖,連接OA,OB,OC,
∵AB是⊙O內(nèi)接正五邊形的一邊,AC是⊙O的內(nèi)接正六邊形的一邊,
∴∠AOC=,∠AOB==72°,
∵OA=OC=OB,
∴∠OAB=54°,∠OAC=60°,
若AB與AC在OA的同側(cè),∠BAC=∠OAC-∠OAB=6°,
當(dāng)AB、AC在OA兩側(cè)時,則∠BAC=∠OAC+∠OAB=54°+60°=114°.
∴∠BAC=6°或114°.
故選:D
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售有甲、乙兩種商品,甲商品每件進(jìn)價10元,售價15元;乙商品每件進(jìn)價30元,售價40元。
(1)若該起市同時一次購進(jìn)甲、兩種商品共80件,恰好用去1600元,求能購進(jìn)甲乙兩種商品各多少件?
(2)該超市為使甲、乙兩種商品共80件的總利潤(利潤=售價-進(jìn)價)不少于600元,但又不超過610元,請你幫助該超市設(shè)計相應(yīng)的進(jìn)貨方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某條道路上通行車輛限速為60千米/時,在離道路50米處建有一個監(jiān)測點(diǎn)P,道路AB段為檢測區(qū)(如圖).在△ABP中,已知∠PAB=32°,∠PBA=45°,那么車輛通過AB段的時間在多少秒以內(nèi)時,可認(rèn)定為超速?(精確到0.1秒.參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班去商場為書法比賽買獎品,書包每個定價40元,文具盒每個定價8元,商場實(shí)行兩種優(yōu)惠方案:①買一個書包送一個文具盒:②按總價的9折付款.若該班需購買書包10個,購買文具盒若干個(不少于10個).
(1)當(dāng)買文具盒40個時,分別計算兩種方案應(yīng)付的費(fèi)用;
(2)當(dāng)購買文具盒多少個時,兩種方案所付的費(fèi)用相同;
(3)如何根據(jù)購買文具盒的個數(shù),選擇哪種優(yōu)惠方案的費(fèi)用比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O和⊙O上的一點(diǎn)A,作⊙O的內(nèi)接正方形和內(nèi)接正六邊形(點(diǎn)A為正方形和正六邊形的頂點(diǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線AB與直線PQ交于點(diǎn)E,直線CD與直線PQ交于點(diǎn)F,∠PEB+∠QFD=180°.
(1)如圖1,求證:AB∥CD;
(2)如圖2,點(diǎn)G為直線PQ上一點(diǎn),過點(diǎn)G作射線GH∥AB,在∠EFD內(nèi)過點(diǎn)F作射線FM,∠FGH內(nèi)過點(diǎn)G作射線GN,∠MFD=∠NGH,求證:FM∥GN;
(3)如圖3,在(2)的條件下,點(diǎn)R為射線FM上一點(diǎn),點(diǎn)S為射線GN上一點(diǎn),分別連接RG、RS、RE,射線RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的中線,E是AD上的一點(diǎn),且AE=2DE,連接BE并延長交AC于點(diǎn)F.
(1)求證:AF=FC;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF與六邊形A′B′C′D′E′F′相似.
求:(1)相似比;
(2)∠A和∠B′的度數(shù);
(3)邊CD,EF,A′F′,E′D′的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com