(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分別是 BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.

小王同學(xué)探究此問題的方法是延長FD到點(diǎn)G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;

探索延伸:

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由.

(1)EF=BE+DF;(2)成立,理由見試題解析.

【解析】

試題分析:(1)延長FD到點(diǎn)G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可得出結(jié)論;

(2)延長FD到點(diǎn)G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可得出結(jié)論.

試題解析:(1)EF=BE+DF,證明如下:

在△ABE和△ADG中,∵DG=BE,∠B=∠ADG,AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF,故答案為: EF=BE+DF;

(2)結(jié)論EF=BE+DF仍然成立;

理由:延長FD到點(diǎn)G.使DG=BE.連結(jié)AG,

在△ABE和△ADG中,∵DG=BE,∠B=∠ADG,AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.

考點(diǎn):全等三角形的判定與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市石景山區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

一次函數(shù) 與反比例函數(shù)的圖象都過點(diǎn)A,的圖象與軸交于點(diǎn)B.

(1)求點(diǎn)B坐標(biāo)及反比例函數(shù)的表達(dá)式;

(2)C軸上一點(diǎn),若四邊形ABCD是平行四邊形,直接寫出點(diǎn)D的坐標(biāo),并判斷D點(diǎn)是否在此反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市海淀區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

方程的根的情況是( )

A.有兩個不相等的實(shí)數(shù)根 B.有兩個相等的實(shí)數(shù)根

C.沒有實(shí)數(shù)根 D.無法確定是否有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市豐臺區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在△ABC中,點(diǎn)D,E分別在AB,AC邊上,且 DE∥BC,如果AD∶DB=3∶2, EC=4,那么AE的長等于 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市豐臺區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

二次函數(shù)的最大值為( )

A.1 B.-1 C.3 D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市東城區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在△ABC中,AB=AC=8,BC=6,點(diǎn)D為BC上一點(diǎn),BD=2.過點(diǎn)D作射線DE交AC于點(diǎn)E,使∠ADE=∠B.求線段EC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市東城區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,把△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)35°,得到△交AC于點(diǎn)D,若∠=90°,則∠A= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市大興區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,以△ABC的一邊BC為直徑的⊙O分別交AB、AC于D、E兩點(diǎn).

(1)當(dāng)△ABC為等邊三角形時,則圖1中△ODE的形狀是 ;

(2)若?A=60°,AB≠AC(如圖2),則(1)的結(jié)論是否還成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市朝陽區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

拋物線的頂點(diǎn)坐標(biāo)是( )

A.(1,2) B.(1,﹣2) C.(﹣1,2) D.(﹣1,﹣2)

查看答案和解析>>

同步練習(xí)冊答案