【題目】如圖1,在正方形ABCD中,E,F(xiàn),G,H分別為邊AB,BC,CD,DA上的點(diǎn),HA=EB=FC=GD,連接EG,F(xiàn)H,交點(diǎn)為O.
(1)如圖2,連接EF,F(xiàn)G,GH,HE,試判斷四邊形EFGH的形狀,并證明你的結(jié)論;
(2)將正方形ABCD沿線段EG,HF剪開,再把得到的四個四邊形按圖3的方式拼接成一個四邊形.若正方形ABCD的邊長為3cm,HA=EB=FC=GD=1cm,則圖3中陰影部分的面積為cm2 .
【答案】
(1)四邊形EFGH是正方形.
證明:∵四邊形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,
∵HA=EB=FC=GD,
∴AE=BF=CG=DH,
∴△AEH≌△BFE≌△CGF≌△DHG,
∴EF=FG=GH=HE,
∴四邊形EFGH是菱形,
∵△DHG≌△AEH,
∴∠DHG=∠AEH,
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∴四邊形EFGH是正方形
(2)1
【解析】解:(2)∵HA=EB=FC=GD=1,AB=BC=CD=AD=3,
∴GF=EF=EH=GH= ,
∵由(1)知,四邊形EFGH是正方形,
∴GO=OF,∠GOF=90°,
由勾股定理得:GO=OF= ,
∵S四邊形FCGO= ×1×2+ × × = ,
∴S陰影= ﹣S四邊形FCGO×4=10﹣9=1.
(1)抓住已知條件先證明∠A=∠B=∠C=∠D=90°,HA=EB=FC=GD,AE=BF=CG=DH,進(jìn)而得出△AEH≌△BFE≌△CGF≌△DHG,證得EF=FG=GH=HE,證得四邊形EFGH是菱形,再證明有一個角是直角,即可得出結(jié)論。
(2)利用勾股定理得出GF=EF=EH=GH的長,由(1)知,四邊形EFGH是正方形,得到GO=OF,∠GOF=90°,進(jìn)而求出OG、OF的長,就可以求出四邊形FCGO的面積,即可求出陰影部分的面積。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
A. 任何數(shù)都有平方根 B. 只有正數(shù)才有平方根
C. 負(fù)數(shù)沒有立方根 D. 存在算術(shù)平方根等于本身的數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的函數(shù)表達(dá)式為y1=﹣3x+3,且l1與x軸交于點(diǎn)D,直線l2:y2=kx+b經(jīng)過點(diǎn)A,B,與直線l1交于點(diǎn)C.
(1)求直線l2的函數(shù)表達(dá)式及C點(diǎn)坐標(biāo);
(2)求△ADC的面積;
(3)當(dāng)x滿足何值時,y1>y2;(直接寫出結(jié)果)
(4)在直角坐標(biāo)系中有點(diǎn)E,和A,C,D構(gòu)成平行四邊形,請直接寫出E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若多項式4x4+1加上一個含字母的單項式,就能變形為一個含x的多項式的平方,則這樣的單項式為 ___________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點(diǎn),另外兩個頂點(diǎn)在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標(biāo)注數(shù)字3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等三角形的對數(shù)是( )
A.1對
B.2對
C.3對
D.4對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com