【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點(diǎn),使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長(zhǎng);

(3)當(dāng)△AED∽△ECD時(shí),請(qǐng)寫(xiě)出線(xiàn)段AD、AB、CD之間數(shù)量關(guān)系,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2);(3)線(xiàn)段AD、AB、CD之間數(shù)量關(guān)系:AD=AB+CD;理由見(jiàn)解析.

【解析】

(1)先根據(jù)同角的余角相等可得:∠DEC=∠A,利用兩角相等證明三角形相似;
(2)先根據(jù)勾股定理得:BE=3,根據(jù)△ABE∽△ECD,列比例式可得結(jié)論;
(3)先根據(jù)△AED∽△ECD,證明∠EAD=∠DEC,可得∠ADE=∠EDC,證明Rt△DFE≌Rt△DCE(HL),則DF=DC,同理可得:AF=AB,相加可得結(jié)論.

(1)證明:∵ABBC,DCBC,

∴∠B=C=90°,BAE+AEB=90°,

AEDE,

∴∠AED=90°,

∴∠AEB+DEC=90°,

∴∠DEC=BAE,

∴△ABE∽△ECD;

(2)解:RtABE中,∵AB=4,AE=5,

BE=3,

BC=5,

EC=5﹣3=2,

由(1)得:ABE∽△ECD,

,

,

CD=;

(3)解:線(xiàn)段AD、AB、CD之間數(shù)量關(guān)系:AD=AB+CD;

理由是:過(guò)EEFADF,

∵△AED∽△ECD,

∴∠EAD=DEC,

∵∠AED=C,

∴∠ADE=EDC,

DCBC,

EF=EC,

DE=DE,

RtDFERtDCE(HL),

DF=DC,

同理可得:ABE≌△AFD,

AF=AB,

AD=AF+DF=AB+CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)+”時(shí)代的到來(lái),傳統(tǒng)的教學(xué)模式也在悄然發(fā)生著改變.某出國(guó)培訓(xùn)機(jī)構(gòu)緊跟潮流,對(duì)培訓(xùn)課程采取了線(xiàn)上線(xiàn)下同步銷(xiāo)售的策路,為了讓客戶(hù)更理性的選擇,該機(jī)構(gòu)推出了甲、乙兩個(gè)課程體驗(yàn)包:甲課程體驗(yàn)包價(jià)值660元含3節(jié)線(xiàn)上課程和2節(jié)線(xiàn)下課;乙課程體驗(yàn)包價(jià)值990元含2節(jié)線(xiàn)上課程和5節(jié)線(xiàn)下課程.

(1)分別求出該機(jī)構(gòu)每節(jié)課的線(xiàn)上價(jià)格和線(xiàn)下價(jià)格;

(2)該機(jī)構(gòu)其中一個(gè)銷(xiāo)售團(tuán)隊(duì)上個(gè)月的銷(xiāo)售業(yè)績(jī)?yōu)椋壕(xiàn)上課程成交900節(jié),線(xiàn)下課成交1000節(jié).為回饋客戶(hù),本月該機(jī)構(gòu)針對(duì)線(xiàn)上、線(xiàn)下每節(jié)課程的價(jià)格均作出了調(diào)整:每節(jié)課線(xiàn)上價(jià)格比上個(gè)月的價(jià)格下調(diào)a%,線(xiàn)下價(jià)格比上個(gè)月的價(jià)格下調(diào)a%,到本月底統(tǒng)計(jì)發(fā)現(xiàn),該銷(xiāo)售團(tuán)隊(duì)線(xiàn)上成交的課程數(shù)比上個(gè)月增加了a%,線(xiàn)下成交的課程數(shù)上升到1080節(jié),最終團(tuán)隊(duì)的月銷(xiāo)售總額線(xiàn)上比線(xiàn)下少了54000元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.

1)畫(huà)出△ABC關(guān)于直線(xiàn)l對(duì)稱(chēng)的△A1B1C1;

2)在直線(xiàn)l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短;(不寫(xiě)作法,保留作圖痕跡)

3)△ABC   直角三角形(填不是),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作發(fā)現(xiàn):如圖1D是等邊△ABCBA上的一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,易證AF=BD(不需要證明);

類(lèi)比猜想:①如圖2,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABCBA的延長(zhǎng)線(xiàn)上時(shí),其它作法與圖1相同,猜想AFBD在圖1中的結(jié)論是否仍然成立。

深入探究:②如圖3,當(dāng)動(dòng)點(diǎn)D在等邊△ABCBA上的一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方、下方分別作等邊△DCF和等邊△DCF′,連接AFBF′你能發(fā)現(xiàn)AF,BF′AB有何數(shù)量關(guān)系,并證明你發(fā)現(xiàn)的結(jié)論。

③如圖4,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABCBA的延長(zhǎng)線(xiàn)上時(shí),其它作法與圖3相同,猜想AF,BF′AB在上題②中的結(jié)論是否仍然成立,若不成立,請(qǐng)給出你的結(jié)論并證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在八年級(jí)(1)班學(xué)生中開(kāi)展對(duì)于我國(guó)國(guó)家公祭日知曉情況的問(wèn)卷調(diào)調(diào)查. 問(wèn)卷調(diào)查的結(jié)果分為A、BC、D四類(lèi),其中A類(lèi)表示非常了解;B類(lèi)表示比較了解C類(lèi)表示基本了解;D類(lèi)表示不太了解;班長(zhǎng)將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)上述信息解答下列問(wèn)題:

1)該班參與問(wèn)卷調(diào)查的人數(shù)有  人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)求C類(lèi)人數(shù)占總調(diào)查人數(shù)的百分比;

4)求扇形統(tǒng)計(jì)圖中A類(lèi)所對(duì)應(yīng)扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A、C的坐標(biāo)分別為A(﹣3,0),C(1,0),tan∠BAC=

(1)求點(diǎn)B的坐標(biāo);

(2)x軸上找一點(diǎn)D,連接BD使得△ABD△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC,AB=AC,BAC=120

1)利用直尺、圓規(guī),求作AB的垂直平分線(xiàn)DE,BC于點(diǎn)D、交AB于點(diǎn)E:(不要求寫(xiě)出作法,但要求保留作圖痕跡)

2)若BD=3,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點(diǎn)M,EF與AC交于點(diǎn)N,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),伴隨點(diǎn)P的運(yùn)動(dòng),矩形PEFG在射線(xiàn)AB上滑動(dòng);動(dòng)點(diǎn)K從點(diǎn)P出發(fā)沿折線(xiàn)PE﹣﹣EF以每秒1個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng).點(diǎn)P、K同時(shí)開(kāi)始運(yùn)動(dòng),當(dāng)點(diǎn)K到達(dá)點(diǎn)F時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、K運(yùn)動(dòng)的時(shí)間是t秒(t>0).

(1)當(dāng)t=1時(shí),KE=_____,EN=_____;

(2)當(dāng)t為何值時(shí),△APM的面積與△MNE的面積相等?

(3)當(dāng)點(diǎn)K到達(dá)點(diǎn)N時(shí),求出t的值;

(4)當(dāng)t為何值時(shí),△PKB是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC

1)若AB=4,AC=5,則BC邊的取值范圍是  ;

2)點(diǎn)DBC延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)點(diǎn)DDE∥AC,交BA的延長(zhǎng)線(xiàn)于點(diǎn)E,若∠E=55°∠ACD=125°,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案