【題目】如圖,在中,,是內(nèi)角的平分線,是外角的平分線,是外角的平分線,以下結(jié)論不正確的是( )
A.B.
C.D.平分
【答案】D
【解析】
A、由AD平分△ABC的外角∠EAC,求出∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD=∠ABC,利用同位角相等兩直線平行得出結(jié)論正確.
B、由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,得出結(jié)論∠ACB=2∠ADB,
C、在△ADC中,∠ADC+∠CAD+∠ACD=180°,利用角的關(guān)系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,得出結(jié)論∠ADC=90°-∠ABD;
D、由BD平分∠ABC,得到∠ABD=∠DBC,由于∠ADB=∠DBC,∠ADC=90°-∠ABC,得到∠ADB不等于∠CDB,故錯(cuò)誤.
A. ∵AD平分△ABC的外角∠EAC,
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故A正確.
B. 由(1)可知AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故B正確.
C. 在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°∠ABD,
故C正確;
D. ∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°∠ABC,
∴∠ADB不等于∠CDB,∴D錯(cuò)誤;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=AC=20 cm.動(dòng)點(diǎn)P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā),沿三角形的邊勻速運(yùn)動(dòng).已知點(diǎn)P,點(diǎn)Q的速度都是2 cm/s,當(dāng)點(diǎn)P第一次到達(dá)B點(diǎn)時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)∠A=______度;
(2)當(dāng)0<t<10,且△APQ為直角三角形時(shí),求t的值;
(3)當(dāng)△APQ為等邊三角形時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提倡綠色出行,某公司在我區(qū)、兩個(gè)街區(qū)分別投放了一批“共享汽車”,“共享汽車”有甲、乙不同款型.
(1)該公司在我區(qū)街區(qū)早期試點(diǎn)時(shí)共投放甲、乙兩種型號(hào)的“共享汽車”各20輛,投放成本共計(jì)劃110萬,其中甲型汽車的成本單價(jià)比乙型汽車少0.5萬元,求甲、乙兩型“共享汽車”的單價(jià)各是多少?
(2)該公司采取了如下的投放方式: 街區(qū)每2000人投放輛“共享汽車”,街區(qū)每2000人投放輛“共享汽車”,按照這種設(shè)放方式,街區(qū)共投放150輛,街區(qū)共投放120輛,如果兩個(gè)街區(qū)共有6萬人,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的直徑,,、分別與圓相交于、,那么下列等式中一定成立的是( )
A. AEBF=AFCF B. AEAB=AOAD'
C. AEAB=AFAC D. AEAF=AOAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,、、.
(1)請(qǐng)畫出關(guān)于軸對(duì)稱的(其中、、分別是、、的對(duì)應(yīng)點(diǎn))并直接寫出點(diǎn)的坐標(biāo)為 .
(2)若直線經(jīng)過點(diǎn)且與軸平行,則點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為 .
(3)在軸上存在一點(diǎn),使最大,則點(diǎn)的坐標(biāo)為 .
(4)第一象限有一點(diǎn),在軸上找一點(diǎn)使最短,畫出最短路徑,保留作圖跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=8,AC=5,BC=7,點(diǎn)D在AB上一動(dòng)點(diǎn),線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到線段CE,AE的最小值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.
以上結(jié)論中,你認(rèn)為正確的有 .(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小剛和小紅打算各自隨機(jī)選擇本周日的上午或下午去揚(yáng)州馬可波羅花世界游玩.
小明和小剛都在本周日上午去游玩的概率為________;
求他們?nèi)嗽谕粋(gè)半天去游玩的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com