【題目】如圖,已知菱形ABCD中,∠B=60°,點E在邊BC上,∠BAE=25°,把線段AE繞點A逆時針方向旋轉,使點E落在邊CD上,那么旋轉角的度數(shù)為______

【答案】60° 70°

【解析】

連接AC,根據(jù)菱形的性質及等邊三角形的判定易證ABC是等邊三角形.分兩種情況:①將ABE繞點A逆時針旋轉60°,點E可落在邊DC上,此時ABEABE1重合;②將線段AE繞點A逆時針旋轉70°,點E可落在邊DC上,點E與點E2重合,此AEC≌△AE2C

連接AC

∵菱形ABCD中,∠ABC=60°,

∴△ABC是等邊三角形,

∴∠BAC=ACB=60°,

∴∠ACD=60°

本題有兩種情況:

①如圖,將ABE繞點A逆時針旋轉,使點B與點C重合,點E與點E1重合,此時ABE≌△ABE1,AE=AE1,旋轉角α=BAC=60°

②∵∠BAC=60°,∠BAE=25°

∴∠EAC=35°

如圖,將線段AE繞點A逆時針旋轉70°,使點E到點E2的位置,

此時AEC≌△AE2C,AE=AE2,旋轉角α=EAE2=70°

綜上可知,符合條件的旋轉角α的度數(shù)為60度或70度.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一副三角板中含有30°角的三角板的直角頂點落在等腰直角三角形的斜邊的中點D處,并繞點D旋轉,兩直角三角板的兩直角邊分別交于點E,F(xiàn),下列結論:①DE=DF;②S四邊形AEDF=SBED+SCFD;③SABC=EF2;④EF2=BE2+CF2,其中正確的序號是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市三景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學校對九(1)班學生五一小長假隨父母到這三個景區(qū)游玩的計劃做了全面調查,調查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調查結果繪制了不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:

請結合圖中信息解答下列問題:

1)九(1)班現(xiàn)有學生   人,在扇形統(tǒng)計圖中表示B類別的扇形的圓心角的度數(shù)為   ;

2)請將條形統(tǒng)計圖補充完整;

3)若該校九年級有1000名學生,求計劃五一小長假隨父母到這三個景區(qū)游玩的學生多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點兩點,其中點,與軸交于點

求一次函數(shù)和反比例函數(shù)的表達式;

點坐標;

根據(jù)圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015德陽)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.

(1)求面料和里料的單價;

(2)該款外套9月份投放市場的批發(fā)價為150/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費用14元,為確保每件外套的利潤不低于30元.

①設10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費用)

②進入11月份以后,銷售情況出現(xiàn)好轉,廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎上實施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎上實施價格上浮.已知對VIP客戶的降價率和對普通客戶的提價率相等,結果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】天水某公交公司將淘汰某一條線路上冒黑煙較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,

1)求購買A型和B型公交車每輛各需多少萬元?

2)預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠BAC90°,BDBC,CEBC,∠DAE45°,若BD,CE3,則線段DE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過點,直線與雙曲線交于另一點,作軸于點,軸于點,連接

(1)求的值;

(2)若,求直線的解析式;

(3)若,其它條件不變,直接寫出的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與拋物線相交于,兩點,拋物線軸于點,交軸正半軸于點,拋物線的頂點為

1)求拋物線的解析式;

2)設點為直線下方的拋物線上一動點,當的面積最大時,求的面積及點的坐標;

3)若點軸上一動點,點在拋物線上且位于其對稱軸右側,當相似時,求點的坐標.

查看答案和解析>>

同步練習冊答案