【題目】如圖,在矩形ABCD中,AB=3,BC=4,點N為邊DC上一動點(不與C、D重合),連接BN,作C關(guān)于直線BN的對稱點C′連接B C′, C′N,當(dāng)C′恰好在△ABD的邊上時,CN的長為__________.
【答案】或
【解析】
分兩種情況討論:點C'在BD上或點C'在AD上,依據(jù)勾股定理以及折疊的性質(zhì),即可得到CN的長.
如圖所示,當(dāng)點C'在BD上時,
設(shè)CN=x,則C'N=x,DN=3-x,
由折疊可得,∠C=∠BC'N=90°,BC'=BC=4,
Rt△BCD中,BD= ,
∴C'D=5-4=1,
∴Rt△DC'N中,12+x2=(3-x)2,
解得x=;
如圖所示,當(dāng)點C'在AD上時,
設(shè)CN=x,則C'N=x,DN=3-x,
由折疊可得,BC'=BC=4,
Rt△ABC'中,AC'=,
∴C'D=,
∴Rt△DC'N中,()2+(3x)2=x2,
解得x=;
綜上所述,CN的長為或.
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,點P是AB上一點,連接CP,將∠B沿CP折疊,使點B落在B'處.以下結(jié)論正確的有________
①當(dāng)AB'⊥AC時,AB'的長為;
②當(dāng)點P位于AB中點時,四邊形ACPB'為菱形;
③當(dāng)∠B'PA=30°時,;
④當(dāng)CP⊥AB時,AP:AB':BP=1:2:3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)山峰的高度每增加1百米,氣溫大約降低0.6℃.氣溫T(℃)和高度h(百米)的函數(shù)關(guān)系如圖所示.請根據(jù)圖象解決下列問題:
(1)求高度為5百米時的氣溫.
(2)求T關(guān)于h的函數(shù)表達式.
(3)測得山頂?shù)臍鉁貫?/span>6℃,求該山峰的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過點A(,2),且與直線交于B、C兩點,點B的坐標(biāo)為(,m).
(1)求拋物線的解析式;
(2)點D為拋物線上位于直線BC上方的一點,過點D作DE⊥x軸交直線BC于點E,點P為對稱軸上一動點,當(dāng)線段DE的長度最大時,求PD+PA的最小值;
(3)設(shè)點M為拋物線的頂點,在y軸上是否存在點Q,使得∠AQM=45°?若存在,求點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一項工程,由甲、乙兩個工程隊共同完成,若乙工程隊單獨完成需要60天;若兩個工程隊合作18天后,甲工程隊再單獨做10天也恰好完成.
(1)甲工程隊單獨完成此項工程需要幾天?
(2)若甲工程隊每天施工費用為0.6萬元,乙工程隊每天施工費用為0.35萬元,要使該項目總施工費用不超過22萬元,則乙工程隊至少施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,,點D為直線BC上的一動點點D不與點B、C重合,以AD為邊作,使,,連接CE.
發(fā)現(xiàn)問題:
如圖1,當(dāng)點D在邊BC上時,
請寫出BD和CE之間的位置關(guān)系為______,并猜想BC和CE、CD之間的數(shù)量關(guān)系:______.
嘗試探究:
如圖2,當(dāng)點D在邊BC的延長線上且其他條件不變時,中BD和CE之間的位置關(guān)系、BC和CE、CD之間的數(shù)量關(guān)系是否成立?若成立,請證明;若不成立,請寫出新的數(shù)量關(guān)系,說明理由;
拓展延伸:
如圖3,當(dāng)點D在邊CB的延長線上且其他條件不變時,若,,求線段ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,-3)三點,其頂點為D,對稱軸是直線,與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸上的一個動點,求△PBC周長的最小值;
(3)如圖2,若E是線段AD上的一個動點(E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為m,△ADF的面積為S.
①試求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個運輸小隊分別從兩個倉庫以相同的工作效率調(diào)運一批物資,兩隊同時開始工作.第二小隊工作5天后,由于技術(shù)問題檢修設(shè)備5天,為趕上進度,再次開工后他們將工作效率提高到原先的2倍,結(jié)果和第一小隊同時完成任務(wù).在兩隊調(diào)運物資的過程中,兩個倉庫物資的剩余量y t與第一小隊工作時間x天的函數(shù)圖像如圖所示.
(1)①求線段AC所表示的y與x之間的函數(shù)表達式;
②求點F的坐標(biāo),并解釋點F的實際意義.
(2)如果第二小隊沒有檢修設(shè)備,按原來的工作效率正常工作,那么他們完成任務(wù)的天數(shù)是 天.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠ACB=30°,將△ABC繞點C順時針旋轉(zhuǎn)一定的角度α得到△DEC,點A、B的對應(yīng)點分別是D、E.
(1)當(dāng)點E恰好在AC上時,如圖1,求∠ADE的大;
(2)若α=60°時,點F是邊AC中點,如圖2,求證:四邊形BEDF是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com