如圖1,邊長為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).

第一次操作:將線段EF繞點(diǎn)F順時針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時,記為點(diǎn)G;

第二次操作:將線段FG繞點(diǎn)G順時針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時,記為點(diǎn)H;

依次操作下去…

(1)圖2中的EFD是經(jīng)過兩次操作后得到的,其形狀為   ,求此時線段EF的長;

(2)若經(jīng)過三次操作可得到四邊形EFGH.

請判斷四邊形EFGH的形狀為   ,此時AE與BF的數(shù)量關(guān)系是   ;

中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;

(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.

 

 

(1)△DEF為等邊三角形,EF的長為4﹣4

(2)①四邊形EFGH的形狀為正方形,此時AE=BF.

②y=2x2﹣8x+16(0<x<4),y的取值范圍為:8≤y<16.

(3)經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是8,它可能為正多邊形,邊長為4﹣4.

【解析】

試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì),易知△EFD是等邊三角形;利用等邊三角形的性質(zhì)、勾股定理即求出EF的長;

(2)①四邊形EFGH的四邊長都相等,所以是正方形;利用三角形全等證明AE=BF;

②求出面積y的表達(dá)式,這是一個二次函數(shù),利用二次函數(shù)性質(zhì)求出最值及y的取值范圍.

(3)如答圖2所示,經(jīng)過多次操作可得到首尾順次相接的多邊形,可能是正多邊形,最大邊數(shù)為8,邊長為4﹣4

試題解析:(1)如題圖2,由旋轉(zhuǎn)性質(zhì)可知EF=DF=DE,則△DEF為等邊三角形.

在Rt△ADE與Rt△CDF中,

∴Rt△ADE≌Rt△CDF(HL)

∴AE=CF.

設(shè)AE=CF=x,則BE=BF=4﹣x

∴△BEF為等腰直角三角形.

∴EF=BF=(4﹣x).

∴DE=DF=EF=(4﹣x).

在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,

解得:x1=8﹣4,x2=8+4(舍去)

∴EF=(4﹣x)=4﹣4

DEF的形狀為等邊三角形,EF的長為4﹣4

(2)①四邊形EFGH的形狀為正方形,此時AE=BF.理由如下:

依題意畫出圖形,如答圖1所示:

由旋轉(zhuǎn)性質(zhì)可知,EF=FG=GH=HE,∴四邊形EFGH的形狀為正方形.

∵∠1+∠2=90°,∠2+∠3=90°,

∴∠1=∠3.

∵∠3+∠4=90°,∠2+∠3=90°,

∴∠2=∠4.

∵EF=EH

∴△AEH≌△BFE(ASA)

∴AE=BF.

②利用①中結(jié)論,易證△AEH、△BFE、△CGF、△DHG均為全等三角形,

∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.

∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.

∴y=2x2﹣8x+16(0<x<4)

∵y=2x2﹣8x+16=2(x﹣2)2+8,

∴當(dāng)x=2時,y取得最小值8;當(dāng)x=0時,y=16,

∴y的取值范圍為:8≤y<16.

(3)經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是8,它可能為正多邊形,邊長為4﹣4.

如答圖2所示,粗線部分是由線段EF經(jīng)過7次操作所形成的正八邊形.

設(shè)邊長EF=FG=x,則BF=CG=x,

BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.

考點(diǎn):1、旋轉(zhuǎn)的性質(zhì);2、正方形;3、勾股定理;4、二次函數(shù) 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江溫州卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DEAB,過點(diǎn)E作EFDE,交BC的延長線于點(diǎn)F.

(1)求F的度數(shù);

(2)若CD=2,求DF的長.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江杭州卷)數(shù)學(xué)(解析版) 題型:選擇題

已知某幾何體的三視圖(單位:cm)則該幾何體的側(cè)面積等于( )cm2.

A. B. C. D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江寧波卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,正方形ABCD和正方形CEFG中,點(diǎn)DCG上,BC=1,CE=3,HAF的中點(diǎn),那么CH的長是

A. 2.5 B. C. D. 2

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江寧波卷)數(shù)學(xué)(解析版) 題型:選擇題

楊梅開始采摘啦!每筐楊梅以5千克為基準(zhǔn),超過的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù),記錄如圖,則這4筐楊梅的總質(zhì)量是

A. 19.7千克 B. 19.9千克 C. 20.1千克 D. 20.3千克

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:解答題

有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上“√,×,×”,如圖1.

(1)若將卡片無標(biāo)記的一面朝上擺在桌上再分別從兩組卡片中隨機(jī)各抽取一張,求兩張卡片上標(biāo)記都是“√”的概率.(請用“樹形圖法”或“列表法“求解)

(2)若把A,B兩組卡片無標(biāo)記的一面對應(yīng)粘貼在一起得到三張卡片,其正、反面標(biāo)記如圖2所示,將卡片正面朝上擺在桌上,并用瓶蓋蓋住標(biāo)記.

若隨機(jī)揭開其中一個蓋子,看到的標(biāo)記是“√”的概率是多少?

若揭開蓋子,看到的卡片正面標(biāo)記是“√”后,猜想它的反面也是“√”,求猜對的概率.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:選擇題

已知反比例函數(shù)y=的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為( 。

A B. C. D.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇鎮(zhèn)江卷)數(shù)學(xué)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,直線與y軸交于點(diǎn)A.

(1)如圖,直線與直線交于點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B橫坐標(biāo)為.

求點(diǎn)B的坐標(biāo)及k的值;

直線與直線與y軸所圍成的ABC的面積等于 ;

(2)直線與x軸交于點(diǎn)E(,0),若,求k的取值范圍.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇連云港卷)數(shù)學(xué)(解析版) 題型:填空題

一個正多邊形的一個外角等于30°,則這個正多邊形的邊數(shù)為 .

 

查看答案和解析>>

同步練習(xí)冊答案