【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A(1,5)和點(diǎn)B(m,1)均在反比例函數(shù)y= 圖象上.

(1)求m,k的值;
(2)設(shè)直線AB與x軸交于點(diǎn)C,求△AOC的面積.

【答案】
(1)解:將A(1,5)和點(diǎn)B(m,1)代入y=得:
m=5,k=5.

(2)解:設(shè)直AB所對應(yīng)的一次函數(shù)關(guān)系式為:y=ax+b(a≠0),

將A(1,5)和點(diǎn)B(5,1)代入可得 ,

解得a=-1,b=6,

∴y=-x+6,

令y=0,得x=6,即OC=6,

SAOC= OC×AE= ×6×5=15.


【解析】(1)先將A(1,5)和點(diǎn)B(m,1)代入反比例函數(shù)解析式即可求出m、k的值。
(2)先根據(jù)A、B兩點(diǎn)坐標(biāo)求出直線AB的函數(shù)解析式,再根據(jù)y=0求出直線AB與x軸的交點(diǎn)C的坐標(biāo),根據(jù)三角形的面積公式即可求解。
【考點(diǎn)精析】本題主要考查了確定一次函數(shù)的表達(dá)式的相關(guān)知識點(diǎn),需要掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,ABBCO是△ABC內(nèi)部的一個(gè)動點(diǎn),△OBD是等腰直角三角形,OBBD

1)求證:∠AOB=∠CDB;

2)若△COD是等腰三角形,∠AOC140°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[知識生成]通常,用兩種不同的方法計(jì)算同一個(gè)圖形的面積,可以得到一個(gè)恒等式.

例如:如圖①是一個(gè)長為,寬為的長方形,沿圖中虛線用剪刀均分成四個(gè)小長方形,然后按圖②的形狀拼成一個(gè)正方形.請解答下列問題:

1)圖②中陰影部分的正方形的邊長是________________;

2)請用兩種不同的方法求圖②中陰影部分的面積:

方法1:________________________;方法2_______________________;

3)觀察圖②,請你寫出(a+b2、之間的等量關(guān)系是____________________________________________;

4)根據(jù)(3)中的等量關(guān)系解決如下問題:,,則=

[知識遷移]

類似地,用兩種不同的方法計(jì)算同一幾何體的體積,也可以得到一個(gè)恒等式.

5)根據(jù)圖③,寫出一個(gè)代數(shù)恒等式:____________________________;

6)已知,利用上面的規(guī)律求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC頂點(diǎn)的坐標(biāo)分別是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).

1)畫出ABC關(guān)于y軸對稱的ABC,并寫出ABC各頂點(diǎn)的坐標(biāo);

2)求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料會暢銷、先用1800元購進(jìn)一批這種飲料,面市后果然供不應(yīng)求,又用8100元購進(jìn)這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.

1)第一批飲料進(jìn)貨單價(jià)多少元?

2)若兩次進(jìn)飲料都按同一價(jià)格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,表示一次函數(shù)y=ax+b與正比例函數(shù)y=abx(a,b是常數(shù),且ab≠0)的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并解決有關(guān)問題:

我們知道,|m|= .現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代

數(shù)式,如化簡代數(shù)式|m+1|+|m2|時(shí),可令 m+1=0 m2=0,分別求得 m=1,m=2(稱﹣1,2 分別為|m+1|與|m2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi), 零點(diǎn)值 m=1 m=2 可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下 3 種情況:

1m<﹣1;(2)﹣1m2;(3m2.從而化簡代數(shù)式|m+1|+|m2| 可分以下 3 種情況:

1)當(dāng) m<﹣1 時(shí),原式=﹣(m+1)﹣(m2=2m+1;

2)當(dāng)﹣1m2 時(shí),原式=m+1﹣(m2=3;

3)當(dāng) m2 時(shí),原式=m+1+m2=2m1

綜上討論,原式=

通過以上閱讀,請你解決以下問題:

1)分別求出|x5|和|x4|的零點(diǎn)值;

2)化簡代數(shù)式|x5|+|x4|;

3)求代數(shù)式|x5|+|x4|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點(diǎn),過點(diǎn)B作BE∥AD,交⊙O于點(diǎn)E,連接ED.

(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B90°,∠BCD135°,且AB3cmBC7cm,CD5cm,點(diǎn)M從點(diǎn)A出發(fā)沿折線ABCD運(yùn)動到點(diǎn)D,且在AB上運(yùn)動的速度為cm/s,在BC上運(yùn)動的速度為1cm/s,在CD上運(yùn)動的速度為cm/s,連接AMDM,當(dāng)點(diǎn)M運(yùn)動時(shí)間為_____s)時(shí),ADM是直角三角形.

查看答案和解析>>

同步練習(xí)冊答案