【題目】如圖,已知是⊙的直徑,弦交于點,過點作⊙的切線與的延長線交于點, 交直線于點

)若,求證: 是⊙的切線;

)如果, 的中點,求直徑的長.

【答案】1)證明見解析;(224.

【解析】試題分析:(1)連接OC,AC=BC,OA=OB,根據(jù)等腰三角形的三線合一的性質(zhì)可得OC⊥AB,再由CG∥AB,即可得OC⊥CG,結(jié)論得證;(2)連接BC,由AF為圓O的切線,利用切線的性質(zhì)得到ABAF垂直,可得出∠DAF與∠DAB互余,再由DEF的中點,利用直角三角形斜邊上的中線等于斜邊的一半及中點的定義得到AD=DE=DF,利用等邊對等角得到∠DAF=∠AFC,又AB為圓的直徑,根據(jù)直徑所對的圓周角為直角,可得出∠ACB為直角,即∠ECB與∠FCA互余,再由同弧所對的圓周角相等得到∠ECB=∠DAB,利用等角的余角相等可得出∠DAF=∠FCA,等量代換可得出∠FCA=∠AFC;過CCH⊥AB,垂足為H,又AF⊥AB,利用平面內(nèi)垂直于同一條直線的兩直線平行,得到AF∥CG,根據(jù)兩直線平行內(nèi)錯角相等得到一對角相等,再由對頂角相等,利用兩對對應(yīng)角相等的兩三角形相似可得△AEF∽△HEC,由相似得比例列出比例式,由DF=DEDEEC的比值,求出CEEF的比值,可得出AF:CH的值,又AF=AC,進而確定出ACCH的比值,利用銳角三角形函數(shù)定義求出cos∠CAB的值,在直角△ABC中,由AC的長及cos∠CAB的值,利用銳角函數(shù)定義即可求出AB的長.

試題解析:

(1)連接OC,

∵AC=BC,OA=OB,

∴OC⊥AB,

∵CG∥AB,

∴OC⊥CG,

是⊙的切線;

2連接BC,AD

∵AF為⊙O的切線,

∴AF⊥AB,即∠DAF+∠DAB=90°,

∵DEF的中點,

∴DF=DE=AD,

∴∠DAF=∠AFC,

∵∠DAF=∠ACF,

∴∠FCA=∠AFC;

CCH⊥ABH

∵AF⊥AB,

∴AF∥CH

∴∠F=∠ECH,又∠AEF=∠CEH,

∴△AEF∽△HEC,

∴AFCH=AEEH=EFEC,

DE=CE,DF=DE,

∴CEFE=23,

∴CHAF=23

∵∠FCA=∠AFC,

AF=AC=8 ,

Rt△ACH中,CHAC=23,

cosCAB=

RtACB中,AC=8,

AB==24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+∠2180o, 3=∠B,試說明∠DEC+∠C180o.請完成下列填空:

解:∵∠1+∠2180o(已知)

又∵∠1+∠4180o(平角定義)

∴∠2=∠4(________)

____________(_________)

∴∠3 ADE(__________)

又∵∠3=∠B(已知)

∴∠ADE=∠B(等量代換)

BC_____(_________)

∴∠DEC+∠C180o(__________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示數(shù)表是由從1 開始的連續(xù)自然數(shù)組成,觀察規(guī)律并完成各題的解答.

1)表中第3行共有_________個數(shù),第3行各數(shù)之和是_________

2)表中第8行的最后一個數(shù)是_________,第8行共有_________個數(shù);

3)用含n的代數(shù)式表示:第n行的第一個數(shù)是_________,最后一個數(shù)是_________,第n行共有_________個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】淇淇和嘉嘉在學(xué)習(xí)了利用相似三角形測高之后分別測量兩個旗桿高度.

(1)如圖1所示,淇淇將鏡子放在地面上,然后后退直到她站直身子剛好能從鏡子里看到旗桿的頂端E,測得腳掌中心位置B到鏡面中心C的距離是50cm,鏡面中心C距離旗桿底部D的距離為4m,已知淇淇同學(xué)的身高是1.54m,眼睛位置A距離淇淇頭頂?shù)木嚯x是4cm,求旗桿DE 的高度.

如圖2所示,嘉嘉在某一時刻測得 1 米長的竹竿豎直放置時影長2米,在同時刻測量旗桿的影長時,旗桿的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他測得落在地面上的影長為10米,落在斜坡上的影長為米,∠DCE=45°,求旗桿AB的高度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,延長平行四邊形的邊到點,使,連接于點

1)求證:

2)連接、,若,求證四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,,點G,H分別在邊AB,DC上,且HA=HG,點EAB邊上的一個動點,連接HE,把△AHE沿直線HE翻折得到△FHE

1)如圖1,當DH=DA時,

填空:∠HGA= 度;

EF∥HG,求∠AHE的度數(shù),并求此時a的最小值;

2)如圖3,∠AEH=60°EG=2BG,連接FG,交邊FG,交邊DC于點P,且FG⊥AB,G為垂足,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、BAB左側(cè))兩點, 一次函數(shù)y=-x+4與坐標軸分別交于點CD,與拋物線交于點M、N,其中點M的橫坐標是.

(1)求出點C、D的坐標;

(2)求拋物線的表達式以及點A、B的坐標;

(3)在平面內(nèi)存在動點PP不與AB重合),滿足∠APB為直角,動點P到直線CD的距離是否有最小值,如果有,請直接寫出這個最小值的結(jié)果;如果沒有,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

如圖1都是等腰直角三角形,其中,點在線段上.

操作發(fā)現(xiàn):如圖2,保持點不動,繞點按順時針旋轉(zhuǎn)角度),連接

1)猜想線段,之間的數(shù)量關(guān)系,并說明理由;

拓展探究:如圖3,繞點繼續(xù)按順時針旋轉(zhuǎn),當點在同一直線上時,過點,垂足為

2)求的度數(shù);

3)直接寫出線段,之間的的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中,錯誤結(jié)論有( );①三角形三條高(或高的延長線)的交點不在三角形的內(nèi)部,就在三角形的外部;②一個多邊形的邊數(shù)每增加一條,這個多邊形的內(nèi)角和就增加360;③兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相平行;④三角形的一個外角等于任意兩個內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長三角形的三邊,所得的三角形三個外角中銳角最多有一個

A. 6B. 5C. 4D. 3

查看答案和解析>>

同步練習(xí)冊答案