【題目】某新農(nóng)村樂園設(shè)置了一個秋千場所,如圖所示,秋千拉繩OB的長為3m,靜止時,踏板到地面距離BD的長為0.6m(踏板厚度忽略不計).為安全起見,樂園管理處規(guī)定:兒童的“安全高度”為hm,成人的“安全高度”為2m(計算結(jié)果精確到0.1m)
(1)當擺繩OA與OB成45°夾角時,恰為兒童的安全高度,則h=m
(2)某成人在玩秋千時,擺繩OC與OB的最大夾角為55°,問此人是否安全?(參考數(shù)據(jù): ≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
【答案】
(1)1.5
(2)解:如圖,過C點作CM⊥DF,交DF于點M,
在Rt△CEO中,∠CEO=90°,
∴cos∠COE= ,
∴OE=OCcos∠COF,
∵OB=OC=3m,∠CON=55°,
∴OE=3cos55°≈1.72m,
∴ED=3+0.6﹣1.72≈1.9m,
∴CM=ED≈1.9m,
∵成人的“安全高度”為2m,
∴成人是安全的.
【解析】解:(1)在Rt△ANO中,∠ANO=90°, ∴cos∠AON= ,
∴ON=OAcos∠AON,
∵OA=OB=3m,∠AON=45°,
∴ON=3cos45°≈2.12m,
∴ND=3+0.6﹣2.12≈1.5m,
∴h=ND=AF≈1.5m;
故答案為:1.5.
(1)根據(jù)余弦函數(shù)先求出OE,再根據(jù)AF=OB+BD,求出DE,即可得出h的值;(2)過C點作CM⊥DF,交DF于點M,根據(jù)已知條件和余弦定理求出OE,再根據(jù)CM=OB+DE﹣OE,求出CM,再與成人的“安全高度”進行比較,即可得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設(shè)運動時間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D為射線CB上一個動點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,過點E作EF∥BC,交直線AC于點F,連接CE.
(1)如圖①,若∠BAC=60°,按邊分類:△CEF是 ____________ 三角形;
(2)若∠BAC<60°.
①如圖②,當點D在線段CB上移動時,判斷△CEF的形狀并證明;
②當點D在線段CB的延長線上移動時,△CEF是什么三角形?請在圖③中畫出相應(yīng)的圖形,寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;
(2)請畫出△ABC關(guān)于原點O成中心對稱的圖形△A2B2C2;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一輛汽車在直線形的公路AB上由A向B行駛,C,D分別是位于公路AB兩側(cè)的村莊.
(1)該汽車行駛到公路AB上的某一位置C′時距離村莊C最近,行駛到D′位置時,距離村莊D最近,請在公路AB上作出C′,D′的位置(保留作圖痕跡);
(2)當汽車從A出發(fā)向B行駛時,在哪一段路上距離村莊C越來越遠,而離村莊D越來越近?(只敘述結(jié)論,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關(guān)于x的方程x2﹣ +cosα=0有兩個相等的實數(shù)根,則銳角α為( )
A.30°
B.45°
C.60°
D.75°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司保安部去商店購買同一品牌的應(yīng)急燈和手電筒,查看定價后發(fā)現(xiàn),購買一個應(yīng)急燈和5個手電筒共需50元,購買3個應(yīng)急燈和2個手電筒共需85元.
(1)求出該品牌應(yīng)急燈、手電筒的定價分別是多少元?
(2)經(jīng)商談,商店給予該公司購買一個該品牌應(yīng)急燈贈送一個該品牌手電筒的優(yōu)惠,如果該公司需要手電筒的個數(shù)是應(yīng)急燈個數(shù)的2倍還多8個,且該公司購買應(yīng)急燈和手電筒的總費用不超過670元,那么該公司最多可購買多少個該品牌應(yīng)急燈?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,與∠1是同位角的是__________,與∠1是內(nèi)錯角的是__________,與∠1是同旁內(nèi)角的是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com