【題目】如圖,△ABC中,∠ACB=90°,AC=CB=2,以BC為邊向外作正方形BCDE,動點M從A點出發(fā),以每秒1個單位的速度沿著A—C—D的路線向D點勻速運動(M不與A、D重合);過點M作直線l⊥AD,l與路線A—B—D相交于點N,設(shè)運動時間為t秒:
(1)當點M在AC上時,BN=_____.(用含t的代數(shù)式表示)
(2)過N作NF⊥ED,垂足為F,矩形MDFN與△ABD重疊部分的面積為S,求S的最大值
(3)當點M在CD上時(含點C),是否存在點M,使△DEN為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由。
【答案】(1);(2)當t=時,S取得最大值;(3)當t=4-或t=3或t=2時,△DEN是等腰三角形.
【解析】
(1)證明△ACB和△AMN是等腰直角三角形,利用等腰直角三角形的性質(zhì)分別求出AB=, AN=,相減即可表示出BN,(2)分類討論①當0≤t<2時,重疊部分是直角梯形, 其中NG=4-2t,DM =4-t,MN=t,表示出陰影部分面積S=t(4-2t+4-t)=,②當2≤t≤4時,重疊部分是三角形,分別求出DM= 4-t, MN= 4-t,表示出陰影部分的面積S==,即可,(3)分三種情況①DN=DE,②DN=NE,③DE=NE,列出等式解方程即可,見詳解.
解:(1)∵∠ACB=90°,AC=CB=2,
∴△ACB是等腰直角三角形,△AMN是等腰直角三角形,
∴AB=,
∵AM=t,
∴AN=,
∴BN=AB-AN=
(2)①當0≤t<2時,如圖,
由題意知AM=MN=t,
則CM=NQ=AC-AM=2-t,
∴DM=CM+CD=4-t,
∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,
∴NQ=BQ=QG=2-t,
則NG=4-2t,
∴S=t(4-2t+4-t)=,
當t=時,S取得最大值;
②當2≤t≤4時,如圖,
∵AM=t,AD=AC+CD=4,
∴DM=AD-AM=4-t,
∵∠DMN=90°,∠CDB=45°,
∴MN=DM=4-t
∴S==,
∵2≤t≤4,
∴當t=2時,S取得最大值2;
綜上,當t=時,S取得最大值.
(3)如圖,
∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,
∴DM=MN= PE =AD-AM=4-t,
∴DN=DM=(4-t),
∴PN=2-(4-t)=t-2,
則NE=
∵DE=2,
∴①若DN=DE,則(4-t)=2,解得t=4-,
②若DN=NE,則(4-t)= ,解得t=3;
③若DE=NE,則2= ,解得t=2或t=4(點N與點E重合,舍去);
綜上,當t=4-或t=3或t=2時,△DEN是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行手工制作比賽,賽后整理參賽同學的成績,并制作成圖表如下:
分數(shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x<100 | 20 | 0.1 |
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)表中m和n所表示的數(shù)分別為:m=______,n=______,
(2)請在圖中,補全頻數(shù)分布直方圖;
(3)比賽成績的中位數(shù)落在哪個分數(shù)段?
(4)如果比賽成績80分以上(含80分)可以獲得獎勵,那么獲獎率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的邊AC為直徑作⊙O交AB、BC于E、D,D恰為BC的中點,過C作⊙O的切線,與AB的延長線交于F,過B作BM⊥AF,交CF于M.
(1)求證:MB=MC;
(2)若MF=5,MB=3,求⊙O的半徑及弦AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=-1,有以下結(jié)論:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>0.其中正確的結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,小紅家陽臺上放置了一個曬衣架.如圖2是曬衣架的側(cè)面示意圖,立桿AB,CD相交于點O,B,D兩點立于地面,經(jīng)測量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條直線,且EF=32cm.(參考數(shù)據(jù):sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.534)
(1)求證:AC∥BD;
(2)求扣鏈EF與立桿AB的夾角∠OEF的度數(shù)(精確到0.1°);
(3)小紅的連衣裙穿在衣架后的總長度達到122cm,垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量瀑布AB的高度,測量人員在瀑布對面山上的D點處測得瀑布頂端A點的仰角是,測得瀑布底端B點的俯角是,AB與水平面垂直又在瀑布下的水平面測得,注:C、G、F三點在同一直線上,于點,斜坡,坡角(參考數(shù)據(jù):,,,,,,)
求測量點D距瀑布AB的距離精確到;
求瀑布AB的高度精確到
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量瀑布AB的高度,測量人員在瀑布對面山上的D點處測得瀑布頂端A點的仰角是,測得瀑布底端B點的俯角是,AB與水平面垂直又在瀑布下的水平面測得,注:C、G、F三點在同一直線上,于點,斜坡,坡角(參考數(shù)據(jù):,,,,,,)
求測量點D距瀑布AB的距離精確到;
求瀑布AB的高度精確到
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖⊙O的半徑為1,過點A(2,0)的直線切⊙O于點B,交y軸于點C.
(1)求線段AB的長;
(2)求以直線AC為圖象的一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克。經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量減少20千克。
(1)如果該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應(yīng)漲價多少元?
(2)當每千克漲價多少元時,該商場的每天盈利最多?最多盈利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com