【題目】如圖,直線y=﹣x+5與雙曲線(x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是.若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線(x>0)的交點(diǎn)有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 0個(gè),或1個(gè),或2個(gè)
【答案】B
【解析】
試題令直線y=﹣x+5與y軸的交點(diǎn)為點(diǎn)D,過(guò)點(diǎn)O作OE⊥直線AC于點(diǎn)E,過(guò)點(diǎn)B作BF⊥x軸于點(diǎn)F,如圖所示.
令直線y=﹣x+5中x=0,則y=5,即OD=5;
令直線y=﹣x+5中y=0,則0=﹣x+5,解得:x=5,即OC=5.
在Rt△COD中,∠COD=90°,OD=OC=5,∴tan∠DCO==1,∠DCO=45°.
∵OE⊥AC,BF⊥x軸,∠DCO=45°,∴△OEC與△BFC都是等腰直角三角形,又∵OC=5,∴OE=.∵S△BOC=BCOE=BC=,∴BC=,∴BF=FC=BC=1,∵OF=OC﹣FC=5﹣1=4,BF=1,∴點(diǎn)B的坐標(biāo)為(4,1),∴k=4×1=4,即雙曲線解析式為.
將直線y=﹣x+5向下平移1個(gè)單位得到的直線的解析式為y=﹣x+5﹣1=﹣x+4,將y=﹣x+4代入到中,得:,整理得:,∵△=16﹣4×4=0,∴平移后的直線與雙曲線只有一個(gè)交點(diǎn).故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BD是∠ABC的角平分線,DE∥BC,交AB于E,∠A=55°,∠BDC=95°,求△BDE各內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,點(diǎn)、分別是、上任意的點(diǎn)(不與端點(diǎn)重合),且,連接與相交于點(diǎn),連接與相交于點(diǎn).給出如下幾個(gè)結(jié)論:①;②;③與一定不垂直;④的大小為定值.其中正確的結(jié)論有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廣告公司設(shè)計(jì)一幅周長(zhǎng)為16米的矩形廣告牌,廣告設(shè)計(jì)費(fèi)為每平方米2000元.設(shè)矩形一邊長(zhǎng)為x,面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)設(shè)計(jì)費(fèi)能達(dá)到24000元嗎?為什么?
(3)當(dāng)x是多少米時(shí),設(shè)計(jì)費(fèi)最多?最多是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的等邊中,點(diǎn)D、E分別是邊AC和AB的一點(diǎn);
如圖1,當(dāng)時(shí),連接BD、CE,設(shè)BD與CE交于點(diǎn)O,求證:;求的度數(shù);
如圖2,點(diǎn)F是邊BC的中點(diǎn),點(diǎn)D是邊AC的中點(diǎn),過(guò)F作交邊AB于點(diǎn)E,連接DE,請(qǐng)你利用目前所學(xué)知識(shí)試說(shuō)明:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(操作發(fā)現(xiàn))
如圖①,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.
(1)請(qǐng)按要求畫(huà)圖:將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′
(2)在(1)所畫(huà)圖形中,∠AB′B= .
(問(wèn)題解決)
如圖②,在等邊三角形ABC中,AC=,點(diǎn)P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過(guò)觀察、分析、思考,對(duì)上述問(wèn)題形成了如下想法:
想法一:將△APC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′B,連接PP′,尋找線段PA、PC之間的數(shù)量關(guān)系;
想法二:將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,連接PP′,尋找線段PA、PC之間的數(shù)量關(guān)系;
請(qǐng)參考小明同學(xué)的想法,完成該問(wèn)題的解答過(guò)程.(求解一種方法即可)
(靈活運(yùn)用)
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),直接寫(xiě)出BD的長(zhǎng)(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開(kāi)始沿折線以的速度運(yùn)動(dòng),點(diǎn)從開(kāi)始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,垂足為,,,是的中點(diǎn).現(xiàn)有下列四個(gè)結(jié)論:①;②四邊形的面積等于;③;④.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com