【題目】2016年3月,我市某中學(xué)舉行了“愛我中國朗誦比賽”活動,根據(jù)學(xué)生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:

(1)參加朗誦比賽的學(xué)生共有   人,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中,m=   ,n=   C等級對應(yīng)扇形有圓心角為   度;

(3)學(xué)校欲從獲A等級的學(xué)生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.

【答案】(1)40,補圖見解析;(2)10,40,144;(3)

【解析】試題分析:(1)由D等級人數(shù)及百分比可得總?cè)藬?shù),根據(jù)各等級人數(shù)之和等于總數(shù)可得答案;(2)根據(jù)AC等級人數(shù)及總?cè)藬?shù)可得百分比,用360度乘以C等級百分比可得圓心角度數(shù);(3)畫樹狀圖列出所有結(jié)果,利用概率公式可得答案.

解:(1)參加比賽學(xué)生共有:12÷30%=40(人);

B等級學(xué)生數(shù)是40﹣4﹣16﹣12=8(人),

2m=×100=10,n=×100=40C等級對應(yīng)扇形有圓心角為360°×40%=144°,

故答案為:10,40144;

3設(shè)獲A等級的小明用A表示,其他的三位同學(xué)用ab,c,表示:

12種情況,其中小明參加的情況有6種,

P(小明參加市比賽)==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x()與每月租出的車輛數(shù)(y)有如下關(guān)系:

x

3000

3200

3500

4000

y

100

96

90

80

1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.

2)已知租出的車每輛每月需要維護(hù)費150元,未租出的車每輛每月需要維護(hù)費50元.用含xx≥3000)的代數(shù)式填表:

租出的車輛數(shù)

未租出的車輛數(shù)

租出每輛車的月收益

所有未租出的車輛每月的維護(hù)費

3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A60°,AB4,BCD為等邊三角形,點EBCD圍成的區(qū)域(包括各邊)內(nèi)的一點,過點EEMAB,交直線AC于點M,作ENAC,交直線AB于點N,則AN+AM的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+x1x軸交于點A,B(A在點B的左側(cè)),與y軸交于點C,其頂點為D.將拋物線位于直線lyt(t)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個“M”形的新圖象.

(1)A,B,D的坐標(biāo)分別為   ,   ,   ;

(2)如圖,拋物線翻折后,點D落在點E處.當(dāng)點E在△ABC內(nèi)(含邊界)時,求t的取值范圍;

(3)如圖,當(dāng)t0時,若Q是“M”形新圖象上一動點,是否存在以CQ為直徑的圓與x軸相切于點P?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,矩形ABCD的周長為64AB=12,對角線AC的垂直平分線分別交AD、BCE、F,連接AF、CE、EF,且EFAC相交于點O

1)求證:四邊形AECF是菱形;

2)求SABFSAEF的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

如圖1,在等邊△ABC中,AB9,⊙C半徑為3P為圓上一動點,連結(jié)AP,BP,求AP+BP的最小值

(1)嘗試解決:

為了解決這個問題,下面給出一種解題思路,通過構(gòu)造一對相似三角形,將BP轉(zhuǎn)化為某一條線段長,具體方法如下:(請把下面的過程填寫完整)

如圖2,連結(jié)CP,在CB上取點D,使CD1,則有

又∵∠PCD=∠   

   ∽△   

PDBP

AP+BPAP+PD

∴當(dāng)A,P,D三點共線時,AP+PD取到最小值

請你完成余下的思考,并直接寫出答案:AP+BP的最小值為   

(2)自主探索:

如圖3,矩形ABCD中,BC6,AB8,P為矩形內(nèi)部一點,且PB4,則AP+PC的最小值為   (請在圖3中添加相應(yīng)的輔助線)

(3)拓展延伸:

如圖4,在扇形COD中,O為圓心,∠COD120°,OC4OA2,OB3,點P上一點,求2PA+PB的最小值,畫出示意圖并寫出求解過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)的頂點為M,直線ym與拋物線交于點A,B,若AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB 圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點M 稱為碟頂.

1)由定義知,取AB中點N,連結(jié)MNMNAB的關(guān)系是_____

2)拋物線y對應(yīng)的準(zhǔn)蝶形必經(jīng)過Bm,m),則m_____,對應(yīng)的碟寬AB_____

3)拋物線yax24aa0)對應(yīng)的碟寬在x 軸上,且AB6

①求拋物線的解析式;

②在此拋物線的對稱軸上是否有這樣的點Pxp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB

1)求證:DC為⊙O的切線;

2)若⊙O的半徑為3,AD=4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,帆船A和帆船B在太湖湖面上訓(xùn)練,O為湖面上的一個定點,教練船靜候于O點,訓(xùn)練時要求A、B兩船始終關(guān)于O點對稱.以O為原點,建立如圖所示的坐標(biāo)系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y上運動,湖面風(fēng)平浪靜,雙帆遠(yuǎn)影優(yōu)美,訓(xùn)練中當(dāng)教練船與AB兩船恰好在直線yx上時,三船同時發(fā)現(xiàn)湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得ACAB的夾角為60°B船也同時測得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點表示).

(1)發(fā)現(xiàn)C船時,AB、C三船所在位置的坐標(biāo)分別為A(______________)、B(______________)C(_______,_______);

(2)發(fā)現(xiàn)C船,三船立即停止訓(xùn)練,并分別從A、O、B三點出發(fā)沿最短路線同時前往救援,設(shè)AB兩船的速度相等,教練船與A船的速度之比為34,問教練船是否最先趕到?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案