【題目】如圖,B地在A地的正東方向,兩地相距28 km.A,B兩地之間有一條東北走向的高速公路,且A,B兩地到這條高速公路的距離相等.上午8:00測得一輛在高速公路上行駛的汽車位于A地的正南方向P處,至上午8:20,B地發(fā)現該車在它的西北方向Q處,該段高速公路限速為110 km/h.問:該車是否超速行駛?
【答案】該車超速行駛了
【解析】試題分析:根據題意得到AB=28,∠P=45°,∠PAC=90°,∠ABQ=45°,則∠ACP=45°,∠BCQ=45°,作AH⊥PQ于H,根據題意有AH=BQ,再證明△ACH≌△BCQ,
得到AC=BC=AB=14,根據等腰直角三角形的性質得PC=AC=28,CQ= =14,所以PQ=PC+CQ=42,然后根據速度公式計算出該車的速度=126km/h,再與110km/h比較即可判斷該車超速行駛了.
試題解析:
根據題意可得,AB=28,∠P=45°,∠PAC=90°,∠ABQ=45°,
∴∠ACP=45°,
∴∠BCQ=45°,
作AH⊥PQ于H,則AH=BQ,
在△ACH和△BCQ中
∴△ACH≌△BCQ(AAS),
∴AC=BC=AB=14,
∴PC=AC=28,CQ==14,
∴PQ=PC+CQ=42,
∴該車的速度==126(km/h),
∵126 km/h>110 km/h,
∴該車超速行駛了
科目:初中數學 來源: 題型:
【題目】如圖所示,在中,,與的平分線交于點,與的平分線交于點,連接.
(1)延長交于點,則圖(a)中與線段一定相等的線段有哪幾條?說明理由(不再另外添加字母和輔助線).
(2)、與之間有怎樣的數量關系?為什么?
(3)如果將條件“”改為“”,如圖(b)所示,其他條件不變,、與的關系又如何?直接寫出結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年10月1日,中華人民共和國70年華誕之際,王梓涵和學校國旗護衛(wèi)隊的其他同學們趕到學校舉行了簡樸而降重的升旗儀式.傾聽著雄壯的國歌聲,目送著五星紅旗級緩升起,不禁心潮澎湃,愛國之情油然而生.愛動腦筋的王梓涵設計了一個方案來測量學校旗桿的高度.將升旗的繩子拉直到末端剛好接觸地面,測得此時繩子末端距旗桿底端2米,然后將繩子末端拉直到距離旗桿5m處,測得此時繩子末端距離地面高度為1m,最后根據剛剛學習的勾股定理就能算出旗桿的高度為( 。
A.10mB.11mC.12mD.13m
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形, D、 E分別在邊AB、AC上,且AD=CE,CD與BE相交于點O.
(1)如圖①,求∠BOD的度數;
(2)如圖②,如果點D、 E分別在邊AB、CA的延長線上時,且AD=CE,求∠BOD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,點在線段外,且,求證:點在線段的垂直平分線上,在證明該結論時,需添加輔助線,則作法不正確的是( )
A.作的平分線交于點B.過點作于點且
C.取中點,連接D.過點作,垂足為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某日,王艷騎自行車到位于家正東方向的演奏廳聽音樂會.王艷離家5分鐘后自行車出現故障而且發(fā)現沒有帶錢包,王艷立即打電話通知在家看報紙的爸爸騎自行車趕來送錢包(王艷打電話和爸爸準備出門的時間忽略不計),同時王艷以原來一半的速度推著自行車繼續(xù)走向演奏廳.爸爸接到電話后,立刻出發(fā)追趕王艷,追上王艷的同時,王艷坐上出租車并以爸爸速度的2倍趕往演奏廳(王艷打車和爸爸將錢包給王艷的時間忽略不計),同時爸爸立刻掉頭以原速趕到位于家正西方3900米的公司上班,最后王艷比爸爸早到達目地的.在整個過程中,王艷和爸爸保持勻速行駛.如圖是王艷與爸爸之間的距離y(米)與王艷出發(fā)時間x(分鐘)之間的函數圖象,則王艷到達演奏廳時,爸爸距離公司_____米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】毎年6月,學校門口的文具店都會購進畢業(yè)季暢銷商品進行銷售.已知校門口“小光文具店“在5月份就售出每本8元的A種品牌同學錄90本,每本10元的B種品牌同學錄175本.
(1)某班班長幫班上同學代買A種品牌和B種品牌同學錄共27本,共花費246元,請問班長代買A種品牌和B種品牌同學錄各多少本?
(2)該文具店在6月份決定將A種品牌同學錄每本降價3元后銷售,B種品牌同學錄每本降價a%(a>0)后銷售.于是,6月份該文具店A種品牌同學錄的銷量比5月份多了a%,B種品牌同學錄的銷量比5月份多了(a+20)%,且6月份A、B兩種品牌的同學錄的銷售總額達到了2550元,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(B在C的左側),交y軸于A、D兩點(A在D的下方),AD=,將△ABC繞點P旋轉180°,得到△MCB.
(1)求B、C兩點的坐標;
(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標;
(3)動直線l從與BM重合的位置開始繞點B順時針旋轉,到與BC重合時停止,設直線l與CM交點為E,點Q為BE的中點,過點E作EG⊥BC于G,連接MQ、QG.請問在旋轉過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數;若變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩校參加學生英語口語比賽,兩校參賽人數相等.比賽結束后,發(fā)現學生成績分別為7分、8分、9分、10分(滿分為10分),乙校平均分是8.3分,乙校的中位數是8分.依據統(tǒng)計數據繪制了如下尚不完整的甲校成績統(tǒng)計表和乙校成績統(tǒng)計圖;
甲校成績統(tǒng)計表
分數 | 7分 | 8分 | 9分 | 10分 |
人數 | 11 | 0 | ■ | 8 |
(1)請你將乙校成績統(tǒng)計圖直接補充完整;
(2)請直接寫出甲校的平均分是 ,甲校的中位數是 ,甲校的眾數是 ,從平均分和中位數的角度分析 校成績較好(填“甲”或“乙”).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com