如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是
 
考點(diǎn):矩形的性質(zhì),翻折變換(折疊問(wèn)題)
專(zhuān)題:
分析:由把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,∠EFB=60°,易證得△EFB′是等邊三角形,繼而可得△A′B′E中,B′E=2A′E,則可求得B′E的長(zhǎng),然后由勾股定理求得A′B′的長(zhǎng),繼而求得答案.
解答:解:在矩形ABCD中,
∵AD∥BC,
∴∠DEF=∠EFB=60°,
∵把矩形ABCD沿EF翻折點(diǎn)B恰好落在AD邊的B′處,
∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,
在△EFB′中,
∵∠DEF=∠EFB=∠EB′F=60°
∴△EFB′是等邊三角形,
Rt△A′EB′中,
∵∠A′B′E=90°-60°=30°,
∴B′E=2A′E,而A′E=2,
∴B′E=4,
∴A′B′=2
3
,即AB=2
3

∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面積=AB•AD=2
3
×8=16
3

故答案為:16
3
點(diǎn)評(píng):此題考查了矩形的性質(zhì)、折疊的性質(zhì)、勾股定理以及等邊三角形的判定與性質(zhì).此題難度適中,注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+6x-5的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)為C.
(1)通過(guò)配方,確定點(diǎn)C坐標(biāo);
(2)二次函數(shù)y=x2-2mx+m2-4的圖象與x軸交于點(diǎn)D、E(點(diǎn)D在點(diǎn)E的左側(cè)),頂點(diǎn)為F.
①若存在以六點(diǎn)A、B、C、D、E、F中的四點(diǎn)為頂點(diǎn)的四邊形為菱形,則m=
 

②是否存在以六點(diǎn)A、B、C、D、E、F中的四點(diǎn)為頂點(diǎn)的四邊形為矩形?若存在,求出m 的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在同一平面內(nèi),兩條平行高速公路l1和l2間有一條“Z”型道路連通,其中AB段與高速公路l1成30°角,長(zhǎng)為20km;BC段與AB、CD段都垂直,長(zhǎng)為10km,CD段長(zhǎng)為30km,求兩高速公路間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系中,已知A(-
3
,0),B(0,2).以O(shè)A、OB為邊作矩形AOBC,再以C為圓心,CA為半徑作⊙C交y軸于E、F兩點(diǎn).
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo);
(2)求線段EF的長(zhǎng);
(3)如圖2,以AB為邊向下作等邊三角形ABM.
①求點(diǎn)M的坐標(biāo);
②若以M為圓心,R為半徑的⊙M上有且只有一個(gè)點(diǎn)到點(diǎn)C的距離等于2,請(qǐng)直接寫(xiě)出R的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【問(wèn)題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿(mǎn)足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類(lèi),可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.

【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)
 
,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫(xiě)作法,保留作圖痕跡)
(4)∠B還要滿(mǎn)足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫(xiě)出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若
 
,則△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

鐵路部門(mén)規(guī)定旅客免費(fèi)攜帶行李箱的長(zhǎng)、寬、高之和不超過(guò)160cm,某廠家生產(chǎn)符合該規(guī)定的行李箱,已知行李箱的高為30cm,長(zhǎng)與寬的比為3:2,則該行李箱的長(zhǎng)的最大值為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:-3×2+(-2)2-5=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知∠C=90°,AC=3,BC=4,則AB邊上的高為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若一直角三角形的兩邊長(zhǎng)為4、5,則第三邊的長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案