【題目】如圖,在直角坐標(biāo)系中,已知直線y=-x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),C點(diǎn)坐標(biāo)為(﹣2,0).

(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的解析式;

(2)如果M為拋物線的頂點(diǎn),聯(lián)結(jié)AM、BM,求四邊形AOBM的面積.

【答案】(1)y=- (2)31

【解析】分析:(1)先利用一次函數(shù)解析式確定A(0,4),B(8,0),再設(shè)交點(diǎn)式y(tǒng)=a(x+2)(x-8),然后把A點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;
(2)先利用配方法得到y(tǒng)=-(x-3)2+,則M(3,),作MD⊥x軸于D,如圖,然后根據(jù)梯形面積公式和三角形面積公式,利用四邊形AOBM的面積=S梯形AODM+SBDM進(jìn)行計(jì)算即可.

詳解:

(1)當(dāng)x=0時(shí),y=- x+4=4,則A(0,4),

當(dāng)y=0時(shí),- x+4=0,解得x=8,則B(8,0),

設(shè)拋物線解析式為y=a(x+2)(x﹣8),

把A(0,4)代入得a2(﹣8)=4,解得x=﹣

拋物線解析式為y=﹣(x+2)(x﹣8),

即y=﹣x2+x+4;

(2)∵y=﹣(x﹣3)2+,

∴M(3,),

作MDx軸于D,如圖,

四邊形AOBM的面積=S梯形AODM+SBDM

=×(4+)×3+×5×

=31.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)5﹣(﹣2)+(﹣3)﹣(+4

(2)(﹣+)×(﹣24)

(3)(﹣3)÷××(﹣15)

(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某智能手機(jī)越來(lái)越受到大眾的喜愛(ài),各種款式相繼投放市場(chǎng),某店經(jīng)營(yíng)的A款手機(jī)去年銷售總額為50000元,今年每部銷售價(jià)比去年降低400元,若賣(mài)出的數(shù)量相同,銷售總額將比去年減少20%.

已知AB兩款手機(jī)的進(jìn)貨和銷售價(jià)格如下表:

A款手機(jī)

B款手機(jī)

進(jìn)貨價(jià)格(元)

1100

1400

銷售價(jià)格(元)

今年的銷售價(jià)格

2000

1)今年A款手機(jī)每部售價(jià)多少元?

2)該店計(jì)劃新進(jìn)一批A款手機(jī)和B款手機(jī)共90部,且B款手機(jī)的進(jìn)貨數(shù)量不超過(guò)A款手機(jī)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批手機(jī)獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(3,3)、B(4,0)和原點(diǎn)O.P為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.

(1)求直線OA和二次函數(shù)的解析式;

(2)當(dāng)點(diǎn)P在直線OA的上方時(shí),

①當(dāng)PC的長(zhǎng)最大時(shí),求點(diǎn)P的坐標(biāo);

②當(dāng)SPCO=SCDO時(shí),求點(diǎn)P的坐標(biāo).

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)綠色出行號(hào)召,越來(lái)越多市民選擇租用共享單車出行已知某共享單車公司為市民提供了手機(jī)支付和會(huì)員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y()與騎行時(shí)間x(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問(wèn)題:

(1)求手機(jī)支付金額y()與騎行時(shí)間x(時(shí))的函數(shù)關(guān)系式;

(2)李老師經(jīng)常騎行共享單車,請(qǐng)根據(jù)不同的騎行時(shí)間幫他確定選擇哪種支付方式比較合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空,完成下列說(shuō)理過(guò)程

如圖,點(diǎn)A,O,B在同一條直線上,ODOE分別平分∠AOC和∠BOC

(1)求∠DOE的度數(shù);

(2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因?yàn)?/span>OD是∠AOC的平分線,

所以∠COD=AOC

因?yàn)?/span>OE是∠BOC的平分線,

所以∠COE=

所以∠DOE=COD+   =(AOC+BOC)=AOB=   °.

(2)(1)可知

BOE=COE=   ﹣∠COD=   °.

所以∠AOE=   ﹣∠BOE=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系,直線分別交軸于點(diǎn)A、B兩點(diǎn),OA=5,OAB=60°.

(1)如圖1,求直線AB的解析式;

(2)如圖2,點(diǎn)P為直線AB上一點(diǎn),連接OP,點(diǎn)DOA延長(zhǎng)線上,分別過(guò)點(diǎn)P、DOA、OP的平行線,兩平行線交于點(diǎn)C,連接AC,設(shè)AD=m,ABC的面積為S,Sm的函數(shù)關(guān)系式;

(3)如圖3,(2)的條件下,PA上取點(diǎn)E ,使PE=AD, 連接EC,DE,若∠ECD=60°,四邊形ADCE的周長(zhǎng)等于22,求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知C,D為線段AB上的兩點(diǎn),點(diǎn)M,N分別為ACBD的中點(diǎn),若AB13,CD5,求線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)的一檔娛樂(lè)性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長(zhǎng)短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.

(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;

(2)請(qǐng)用畫(huà)樹(shù)狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案