【題目】計算:

(1)5﹣(﹣2)+(﹣3)﹣(+4

(2)(﹣+)×(﹣24)

(3)(﹣3)÷××(﹣15)

(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017

【答案】(1)0;(2)15;(3)80;(4)14

【解析】分析:(1)將減法轉化為加法,再利用加法的交換律和結合律簡便計算可得;

(2)運用乘法的分配律計算可得;

(3)將除法轉化為乘法,再計算乘法即可得;

(4)根據(jù)有理數(shù)的混合運算順序和法則計算可得.

詳解:

解:(1)原式=5+2﹣3﹣4

=5﹣3+2﹣4

=2﹣2

=0;

(2)原式=×24+×24﹣×24

=18+15﹣18

=15;

(3)原式=(﹣3)×××(﹣15)

=4×4×5

=80;

(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)

=﹣1+18﹣3

=14.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設=y,求y關于x的函數(shù)關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點E.若OB2﹣BE2=10,則k的值是( 。

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角ABC內接于O,若O的半徑為6,sinA=,求BC的長.

【答案】BC=8.

【解析】試題分析:通過作輔助線構成直角三角形,再利用三角函數(shù)知識進行求解.

試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.

點睛:直徑所對的圓周角是直角.

型】解答
束】
22

【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點.過點BBCx軸,垂足為C,且SABC=5.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點,且y1≥y2,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y= 的圖象在第一象限相交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C,如果四邊形OBAC是正方形.

(1)求一次函數(shù)的解析式。

(2)一次函數(shù)的圖象與y軸交于點D. x軸上是否存在一點P,使得PA+PD最小?若存在,請求出P點坐標及最小值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列條件中,不能判定一個四邊形是平行四邊形的是( 。

A. 兩組對邊分別平行B. 一組對邊平行且相等C. 兩組對角分別相等 D. 一組對邊相等且一組對角相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BCAD⊥CD,∠BAD=60°,點MN分別在AB、AD邊上,若AMMB=ANND=12,則tan∠MCN=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,已知直線y=-x+4與y軸交于A點,與x軸交于B點,C點坐標為(﹣2,0).

(1)求經(jīng)過A,B,C三點的拋物線的解析式;

(2)如果M為拋物線的頂點,聯(lián)結AM、BM,求四邊形AOBM的面積.

查看答案和解析>>

同步練習冊答案