【題目】如圖,海中有一小島P,在距小島P的海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
【答案】輪船自A處開始至少沿南偏東75°度方向航行,才能安全通過這一海域.
【解析】試題分析: 過P作PB⊥AM于B,則PC的長是A沿AM方向距離P點的最短距離,求出PC長和16比較即可,第二問設(shè)出航行方向,利用特殊角的三角函數(shù)值確定答案.
試題解析:過P作PB⊥AM于B,
在Rt△APB中,∵∠PAB=30°,
∴PB=AP=×32=16海里,
∵16<16故輪船有觸礁危險,
為了安全,應(yīng)該變航行方向,并且保證點P到航線的距離不小于暗礁的半徑16海里,即這個距離至少為16海里,
設(shè)安全航向為AC,作PD⊥AC于點D,
由題意得,AP=32海里,PD=16海里,
∵sin∠PAC=,
∴在Rt△PAD中,∠PAC=45°,
∴∠BAC=∠PAC-∠PAB=45°-30°=15°,
答:輪船自A處開始至少沿東偏南15°度方向航行,才能安全通過這一海域.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角板(其中一個三角板的內(nèi)角是45°,45°,90°,另一個是30°,60°,90°)
(1)如圖①放置,AB⊥AD,∠CAE=_______,BC與AD的位置關(guān)系是__________;
(2)在(1)的基礎(chǔ)上,再拿一個30°,60°,90°的直角三角板,如圖②放置,將AC′邊和AD邊重合, AE是∠CAB′的角平分線嗎,如果是,請加以說明,如果不是,請說明理由.
(3)根據(jù)(1)(2)的計算,請解決下列問題:
如圖③∠BAD=90°,∠BAC=∠FAD= (是銳角),將一個45°,45°,90°直角三角板的一直角邊與AD邊重合,銳角頂點A與∠BAD的頂點重合,AE是∠CAF的角平分線嗎?如果是,請加以說明,如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD 是△ABC 的角平分線,DE,DF 分別是△BAD 和△ACD 的高,得到下列四個結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠A=90°時,四邊形 AEDF 是正方形;④AE+DF=AF+DE.其中正確的是_________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A,,反比例函數(shù)的圖象經(jīng)過點C.
(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形,請你通過計算說明點在雙曲線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)動手操作:
如圖①,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點處,折痕為EF,若∠ABE=20°,那么的度數(shù)為 。
(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認為△AEF是等腰三角形,你同意嗎?請說明理由.
(3)實踐與運用:
將矩形紙片ABCD 按如下步驟操作:將紙片對折得折痕EF,折痕與AD邊交于點E,與BC邊交于點F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點A、點D都與點F重合,展開紙片,此時恰好有MP=MN=PQ(如圖④),求∠MNF的大小。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,3))、B(3,-1),點M在x軸上,當(dāng)AM-BM最大時,點M的坐標(biāo)為
A. (2,0) B. (2.5,0) C. (4,0), D. (4.5,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)求證:無論為任何實數(shù),拋物線與軸總有兩個交點;
(2)若A、B是拋物線上的兩個不同點,求拋物線的表達式和的值;
(3)若反比例函數(shù)的圖象與(2)中的拋物線在第一象限內(nèi)的交點的橫坐標(biāo)為,且滿足2<<3,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016江蘇省無錫市)某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達100萬元.由于該產(chǎn)品供不應(yīng)求,公司計劃于3月份開始全部改為線上銷售,這樣,預(yù)計今年每月的銷售額y(萬元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬元)與銷售額y(萬元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.
(1)求經(jīng)銷成本p(萬元)與銷售額y(萬元)之間的函數(shù)關(guān)系式;
(2)分別求該公司3月,4月的利潤;
(3)問:把3月作為第一個月開始往后算,最早到第幾個月止,該公司改用線上銷售后所獲得利潤總額比同期用線下方式銷售所能獲得的利潤總額至少多出200萬元?(利潤=銷售額﹣經(jīng)銷成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com