【題目】如圖,點(diǎn)在正方形的對(duì)角線上,且,正方形的兩邊,分別交,于點(diǎn),,若正方形的邊長為,則重疊部分四邊形的面積為( )
A.B.C.D.
【答案】A
【解析】
作EP⊥BC于點(diǎn)P,EQ⊥CD于點(diǎn)Q,證明△EPM≌△EQN,利用四邊形EMCN的面積等于正方形PCQE的面積求解即可.
解:作EP⊥BC于點(diǎn)P,EQ⊥CD于點(diǎn)Q,
∵四邊形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵四邊形是正方形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分線,∠EPC=∠EQC=90°,
∴EP=EQ,四邊形PCQE是正方形,
在△EPM和△EQN中,,
∴△EPM=△EQN(ASA),
∴S△EQN=S△EPM,
∴四邊形EMCN的面積等于正方形PCQE的面積,
∵正方形ABCD的邊長為a,
∴AC=a,
∵,
∴EC=,
∴EP=PC=,
∴正方形PCQE的面積=×=,
四邊形EMCN的面積=,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b,填空:當(dāng)點(diǎn)A位于 時(shí),線段AC的長取到最大值,則最大值為 ;(用含a、b的式子表示)。
(2)如圖2,若點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=2,分別以AB,AC為邊,作等邊和等邊,連接CD,BE.
①圖中與線段BE相等的線段是線段 ,并說明理由;
②直接寫出線段BE長的最大值為 。
(3)如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫出線段AM長的最大值為 ,及此時(shí)點(diǎn)P的坐標(biāo)為 。(提示:等腰直角三角形的三邊長a、b、c滿足a:b:c=1:1:)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:如圖1,圓的概念:在平面內(nèi),線段繞它固定的一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)所形成的圖形叫做圓.就是說,到某個(gè)定點(diǎn)等于定長的所有點(diǎn)在同一個(gè)圓上,圓心在,半徑為的圓的方程可以寫為:, 如:圓心在,半徑為5的圓方程為:
(1)填空:以為圓心,為半徑的圓的方程為______;
(2)根據(jù)以上材料解決下列問題:如圖2, 以為圓心的圓與軸相切于原點(diǎn),是上一點(diǎn),連接,作垂足為,延長交軸于點(diǎn),已知.
①連接,證明是的切線;
②在上是否存在一點(diǎn),使?若存在,求點(diǎn)坐標(biāo),并寫出以為圓心,以為半徑的的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形中,對(duì)角線、相交于點(diǎn),,.
(1)如圖1,求證:四邊形為平行四邊形;
(2)如圖2,,,,,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與直線交于點(diǎn)和點(diǎn),與軸交于點(diǎn),且點(diǎn)在軸上,為拋物線的頂點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)若是第一象限內(nèi)拋物線上的一個(gè)運(yùn)動(dòng)的點(diǎn),點(diǎn)的橫坐標(biāo)為,過點(diǎn)作軸,交直線于點(diǎn),求當(dāng)為何值時(shí),線段的長最大?最大值是多少?并直接寫出此時(shí)點(diǎn)的坐標(biāo);
(3)在(2)的條件下,當(dāng)的長取得最大值時(shí),在坐標(biāo)平面內(nèi)是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出符合條件的點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,BC∥x軸.AD與y軸交于點(diǎn)E,反比例函數(shù)y=(x>0)的圖象經(jīng)過頂點(diǎn)C、D,已知點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( )
A.B.C.3D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再從余下的四個(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩組卡片,它們除標(biāo)號(hào)外其他均相同,第一組卡片上分別寫有數(shù)字“1,2,3”,第二組卡片上分別寫有數(shù)字“﹣3,﹣1,1,2”,把卡片背面朝上洗勻,先從第一組卡片中隨機(jī)抽出一張,將其標(biāo)記為一個(gè)點(diǎn)坐標(biāo)的橫坐標(biāo),再從第二組卡片中隨機(jī)抽出一張,將其標(biāo)記為一個(gè)點(diǎn)坐標(biāo)的縱坐標(biāo),則組成的這個(gè)點(diǎn)在一次函數(shù)y=﹣2x+3上的概率是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com